Recent developments in parton showers

Stefan Höche

Fermi National Accelerator Laboratory

Zurich Phenomenology Workshop

Zürich, 13/1/2023

The Standard Model as we know it

[ATLAS] https://twiki.cern.ch/twiki/bin/view/AtlasPublic/StandardModelPublicResults [CMS] https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsCombined

Fermilab 1

How we measure it

Fermilab 2

LHC event generators

Short distance interactions

- Signal process
- Radiative corrections
- Long-distance interactions
 - Hadronization
 - Particle decays

Divide and Conquer

- Quantity of interest: Total interaction rate
- Convolution of short & long distance physics

$$\sigma_{p_1p_2 \to X} = \sum_{i,j \in \{q,g\}} \int \mathrm{d}x_1 \mathrm{d}x_2 \underbrace{f_{p_1,i}(x_1,\mu_F^2) f_{p_2,j}(x_2,\mu_F^2)}_{\text{long distance}} \underbrace{\hat{\sigma}_{ij \to X}(x_1x_2,\mu_F^2)}_{\text{short distance}}$$

[Buckley et al.] arXiv:1101.2599 [Campbell et al.] arXiv:2203.11110

🗱 Fermilab

3

Connection to QCD theory

• $\hat{\sigma}_{ij \to n}(\mu_F^2) \to \text{Collinearly factorized fixed-order result at N^xLO}$ Implemented in fully differential form to be maximally useful Tree level: $d\Phi_n B_n$

Automated ME generators + phase-space integrators

1-Loop level: $d\Phi_n \left(B_n + V_n + \sum C + \sum I_n \right) + d\Phi_{n+1} \left(R_n - \sum S_n \right)$

Automated loop ME generators + integral libraries + IR subtraction 2-Loop level: It depends ...

Individual solutions based on SCET, q_T subtraction, P2B

■ $f_i(x, \mu_F^2) \rightarrow \text{Collinearly factorized PDF at NyLO}$ Evaluated at $O(1 \text{GeV}^2)$ and expanded into a series above 1GeV^2 DGLAP: $\frac{\mathrm{d}x x f_a(x, t)}{\mathrm{d} \ln t} = \sum_{b=q,g} \int_0^1 \mathrm{d}\tau \int_0^1 \mathrm{d}z \frac{\alpha_s}{2\pi} [z P_{ab}(z)]_+ \tau f_b(\tau, t) \,\delta(x - \tau z)$

Parton showers, dipole showers, antenna showers, ...

Matching:
$$d\Phi_n \ \frac{S_n}{B_n} \leftrightarrow \frac{dt}{t} dz \ \frac{\alpha_s}{2\pi} P_{ab}(z)$$

MC@NLO, POWHEG, Geneva, MINNLO_{PS}, ...

Directions of development

Much effort focused on parton-shower component recently

- Phenomenologically interesting: Drives jet production, *b*-tagging, ...
- Experimentally relevant: Often source of largest uncertainty
- The unique part of event generators (in perturbative QCD)

Fixed-order aspects

- Matching to NLO calculations
 - Negative weight fraction
 - Unweighting efficiency
- Matching to NNLO calculations
 - Semi-inclusive
 - Fully differential
- Matching to N³LO calculations

All-order aspects

- NLL precision
- Splitting functions at NLO
- Spin correlations
- Sub-leading power corrections
- Sub-leading color effects
- Threshold effects
- Amplitude evolution

Evolution of parton-showers over time

🛟 Fermilab 🛛 6

Simulation of QCD dipole radiation Approaches, problems & solutions

Semi-classical radiation pattern

[Marchesini,Webber] NPB310(1988)461

Soft gluon radiator can be written in terms of energies and angles

$$J_{\mu}J^{\mu} \rightarrow \frac{p_i p_k}{(p_i p_j)(p_j p_k)} = \frac{W_{ik,j}}{E_j^2}$$

Angular "radiator" function

$$W_{ik,j} = \frac{1 - \cos \theta_{ik}}{(1 - \cos \theta_{ij})(1 - \cos \theta_{jk})}$$

Divergent as $\theta_{ij} \to 0$ and as $\theta_{jk} \to 0$

 \rightarrow Expose individual collinear singularities using $W_{ik,j} = \tilde{W}^i_{ik,j} + \tilde{W}^k_{ki,j}$

$$\tilde{W}_{ik,j}^{i} = \frac{1}{2} \left[\frac{1 - \cos \theta_{ik}}{(1 - \cos \theta_{ij})(1 - \cos \theta_{kj})} + \frac{1}{1 - \cos \theta_{ij}} - \frac{1}{1 - \cos \theta_{kj}} \right]$$

- Divergent as $\theta_{ij} \to 0$, but regular as $\theta_{kj} \to 0$
- Convenient properties upon integration over azimuthal angle

Semi-classical radiation pattern

- Work in a frame where direction of $\vec{p_i}$ aligned with *z*-axis $\cos \theta_{kj} = \cos \theta_k^i \cos \theta_j^i + \sin \theta_k^i \sin \theta_j^i \cos \phi_{kj}^i$
- Integration over ϕ_j yields

$$\frac{1}{2\pi} \int_0^{2\pi} \mathrm{d}\phi^i_{kj} \tilde{W}^i_{ik,j} = \frac{1}{1 - \cos\theta^i_j} \times \begin{cases} 1 & \text{if } \theta^i_j < \theta^i_k \\ 0 & \text{else} \end{cases}$$

- On average, no radiation outside cone defined by parent dipole
- Differential radiation pattern more intricate:
 Positive & negative contributions outside cone sum to zero

Dual description and the Lund plane

[Gustafson] PLB175(1986)453

Compute everything in center-of-mass frame of fast partons

Simple expressions for transverse momentum and rapidity

$$p_T^2 = \frac{2(p_i p_j)(p_k p_j)}{p_i p_k}$$
, $\eta = \frac{1}{2} \ln \frac{p_i p_j}{p_k p_j}$

In momentum conserving parton branching $(\tilde{p}_i, \tilde{p}_k) \rightarrow (p_i, p_k, p_j)$

 $-\ln \tilde{s}_{ik}/p_T^2 \le 2\eta \le \ln \tilde{s}_{ik}/p_T^2$

- Differential phase-space element $\propto \mathrm{d} p_T^2 \, \mathrm{d} \eta$
- Visualized in Lund plane
 - Phase space bounded by diagonals
 - Single-emission semi-classical radiation probability a constant

Angular ordered parton showers

[Marchesini,Webber] NPB238(1984)1, ...

Differential radiation probability

$$\mathrm{d}\mathcal{P} = \mathrm{d}\Phi_{+1}|M|^2 \approx \frac{\mathrm{d}\tilde{q}^2}{\tilde{q}^2}\,\mathrm{d}z\,\frac{\alpha_s}{2\pi}\,P_{\tilde{\imath}ji}(z)$$

Lund plane filled from center to edges

- Random walk in p_T^2
- Color factors correct for observables insensitive to azimuthal correlations
- Small dead zone at $\ln(p_T^2/\tilde{s}) \approx 0$

🕻 Fermilab

10

 Usually disfavored due to dead zones Not suitable to resum non-global logartihms

Dipole showers

[Gustafson,Pettersson] NPB306(1988)746, ...

Differential radiation probability for the dipole

$$\mathrm{d}\mathcal{P} = \mathrm{d}\Phi_{+1}|M|^2 \approx \frac{\mathrm{d}p_T^2}{p_T^2} \,\mathrm{d}\eta \,\frac{\alpha_s}{2\pi}\,\tilde{P}_{\tilde{\imath}\tilde{\jmath}}(z)$$

- Ordering parameter p_T²
 Splitting variable z = 1 s_{ij}/(s s_{ij}) e^{-2η}
- Lund plane filled from top to bottom
 - **Random walk in** η
 - Color factors in CFFE approximation
 - Pairs of partons evolve simultaneously
 - No dead zones
- Solves problem of dead zones Known issues with color coherence

Problems with average color charges

- In angular ordered showers angles are measured in the event center-of-mass frame → coherence effects modeled by angular ordering variable agree on average with matrix element
- In dipole-like showers angles effectively measured in center-of-mass frame of emitting color dipole → angular coherence not reflected by setting average QCD charge

- Emission off "back plane" in Lund diagram should be associated with C_F, but is partly associated with C_A/2 in dipole showers
- All-orders problem that appears first in 2-gluon emission case

Solutions for average color charges

[Gustafsson] NPB392(1993)251 [Hamilton,Medves,Salam,Scyboz,Soyez] arXiv:2011.10054

🕻 Fermilab

13

- Analyze rapidity of gluon emission in event center-of-mass frame
- Sectorize phase space and assign gluon to closest parton → choose corresponding color charge for evolution
- Same technology for higher number of emissions

Starting with 4 emissions, there be "color monsters" [Dokshitzer, Troian, Khoze] SJNP47(1988)881, YF47(1988)1384

- Quartic Casimir operators (easy)
- Non-factorizable contributions (hard)

Solutions for average color charges

- Can include double-soft corrections via reweighting [Giele,Kosower,Skands] arXiv:1102.2126
- Algorithm scales as N² but can be simplified while retaining formal accuracy
- Implementation as nested corrections in rapidity segments of parent dipole
- Excellent agreement with full matrix element

Good agreement with full-color evolution [Hatta,Ueda] arXiv:1304.6930

Problems with momentum mapping

[Dasgupta, Dreyer, Hamilton, Monni, Salam] arXiv:1805.09327

 Subtle problems in standard dipole-like momentum mapping

$$\begin{split} p_k^{\mu} &= \left(1 - \frac{p_{ij}^2}{2\tilde{p}_{ij}\tilde{p}_k}\right) \tilde{p}_k^{\mu} \\ p_i^{\mu} &= \tilde{z} \, \tilde{p}_{ij}^{\mu} + (1 - \tilde{z}) \frac{p_{ij}^2}{2\tilde{p}_{ij}\tilde{p}_k} \tilde{p}_k^{\mu} + k_{\perp}^{\mu} \\ p_j^{\mu} &= (1 - \tilde{z}) \, \tilde{p}_{ij}^{\mu} + \tilde{z} \frac{p_{ij}^2}{2\tilde{p}_{ij}\tilde{p}_k} \tilde{p}_k^{\mu} - k_{\perp}^{\mu} \end{split}$$

- Induces angular correlations across multiple emissions
- Spoils agreement w/ analytic resummation

ratio of dipole-shower double-soft ME to correct result

Fermilab 15

Solutions for momentum mapping

[Dasgupta, Dreyer, Hamilton, Monni, Salam, Soyez] arXiv:2002.11114

🛟 Fermilab

16

Problem can be solved by partitioning of antenna radiation pattern and choosing a suitable evolution variable ($\beta \sim 1/2$)

$$k_T = \rho v e^{\beta |\bar{\eta}|} \qquad \rho = \left(\frac{s_i s_j}{Q^2 s_{ij}}\right)^{\beta/2}$$

Different recoil schemes can lead to NLL result if β chosen appropriately: Local dipole, local antenna, and global antenna

NLL correct for global and non-global observables in $e^+e^- \rightarrow$ hadrons

Solutions for momentum mapping

[Bewick, Ferrario-Ravasio, Richardson, Seymour] arXiv:1904.11866

- Recoil schemes affect logarithmic accuracy but impact also phase-space coverage
- In context of angular ordered Herwig 7 (NLL accurate for global observables)
 - *q_T* preserving scheme: Maintains logarithmic accuracy Overpopulates hard region
 - q² preserving scheme:
 Breaks logarithmic accuracy
 Good description of hard region
 - Dot product preserving scheme (new): Maintains logarithmic accuracy Good description of hard radiation

Solutions for momentum mapping

[Nagy,Soper] arXiv:2011.04773

- Local transverse recoil, global longitudinal recoil
- Analytic proof of NLL correctness, based on kinematics in $s \to \infty$ limit

A new perspective on old ideas Identified partons & azimuthal angle dependence

The semi-classical matrix element revisited

 Alternative to additive matching: partial fraction matrix element & match to collinear sectors [Ellis,Ross,Terrano] NPB178(1981)421, [Catani,Seymour] hep-ph/9605323

- Captures matrix element both in angular ordered and unordered region
- Caveat: Oversampling difficult for certain kinematics maps
- Separate into energy & angle first [Herren,Krauss,Reichelt,Schönherr,SH] arXiv:2208.06057 Partial fraction angular radiator only: $W_{ik,j} = \bar{W}_{ik,j}^i + \bar{W}_{ki,j}^k$

$$\bar{W}_{ik,j}^{i} = \frac{1 - \cos \theta_{ik}}{(1 - \cos \theta_{ij})(2 - \cos \theta_{ij} - \cos \theta_{kj})}$$

Bounded by
$$(1 - \cos \theta_{ij}) \overline{W}^i_{ik,j} < 2$$

The semi-classical matrix element revisited

Integration over
$$\phi_j$$
 yields

$$\frac{1}{2\pi} \int_0^{2\pi} \mathrm{d}\phi^i_{kj} \bar{W}^i_{ik,j} = \frac{1}{1 - \cos\theta^i_j} \frac{1}{\sqrt{(\bar{A}^i_{ij,k})^2 - (\bar{B}^i_{ij,k})^2}}$$

- Radiation across all of phase space
- Probabilistic radiation pattern

$$\begin{split} \bar{A}_{ij,k}^i &= \frac{2 - \cos \theta_j^i (1 + \cos \theta_k^i)}{1 - \cos \theta_k^i} \\ \bar{B}_{ij,k}^i &= \frac{\sqrt{(1 - \cos^2 \theta_j^i)(1 - \cos^2 \theta_k^i)}}{1 - \cos \theta_k^i} \end{split}$$

Kinematics mapping revisited

In collinear limit, splitting kinematics defined by $(n \rightarrow auxiliary vector)$

$$p_i \stackrel{i||j}{\longrightarrow} z \, \tilde{p}_i \;, \qquad p_j \stackrel{i||j}{\longrightarrow} (1-z) \, \tilde{p}_i \qquad \text{where} \qquad z = rac{p_i n}{(p_i + p_j) n}$$

Parametrization, using hard momentum \tilde{K}

$$p_i = z \, \tilde{p}_i , \qquad n = \tilde{K} + (1 - z) \, \tilde{p}_i$$

■ Using on-shell conditions & momentum conservation ($\kappa = \tilde{K}^2/(2\tilde{p}_i\tilde{K})$)

$$p_j = (1-z)\,\tilde{p}_i + v\big(\tilde{K} - (1-z+2\kappa)\,\tilde{p}_i\big) + k_\perp$$
$$K = \tilde{K} - v\big(\tilde{K} - (1-z+2\kappa)\,\tilde{p}_i\big) - k_\perp$$

Momenta in $ilde{K}$ Lorentz-boosted to new frame K [Catani,Seymour] hep-ph/9605323

$$p_l^{\mu} \to \Lambda_{\nu}^{\mu}(K, \tilde{K}) \, p_l^{\nu} \,, \qquad \Lambda_{\nu}^{\mu}(K, \tilde{K}) = g_{\nu}^{\mu} - \frac{2(K + \tilde{K})^{\mu}(K + \tilde{K})_{\nu}}{(K + \tilde{K})^2} + \frac{2\tilde{K}^{\mu}K_{\nu}}{K^2}$$

Fermilab 21

- Logarithmic accuracy of parton shower can be quantified by comparing results to (semi-)analytic resummation e.g. [Banfi,Salam,Zanderighi] hep-ph/0407286
- Example: Thrust or FC_0 in $e^+e^- \rightarrow$ hadrons
- Define a shower evolution variable $\xi = k_T^2/(1-z)$
- Parton-shower one-emission probability for $\xi > Q^2 \tau$

$$R_{\rm PS}(\tau) = 2 \int_{Q^2 \tau}^{Q^2} \frac{d\xi}{\xi} \int_{z_{\rm min}}^{z_{\rm max}} dz \; \frac{\alpha_s(k_T^2)}{2\pi} C_F\left[\frac{2}{1-z} - (1+z)\right] \Theta(\eta)$$

Approximate to NLL accuracy

$$R_{\rm NLL}(\tau) = 2 \int_{Q^2 \tau}^{Q^2} \frac{d\xi}{\xi} \left[\int_0^1 dz \; \frac{\alpha_s(k_T^2)}{2\pi} \frac{2 C_F}{1-z} \Theta(\eta) - \frac{\alpha_s(\xi)}{\pi} C_F B_q \right]$$

Cumulative cross section $\Sigma(\tau) = e^{-R(\tau)} \mathcal{F}(\tau)$ obtained from all-orders resummed result by Taylor expansion of virtual corrections in cutoff ε

$$\mathcal{F}(\tau) = \int d^3k_1 |M(k_1)|^2 e^{-R' \ln \frac{\tau}{\varepsilon v_1}} \sum_{m=0}^{\infty} \frac{1}{m!} \left(\prod_{i=2}^{m+1} \int_{\varepsilon v_1}^{v_1} d^3k_i |M(k_i)|^2 \right) \\ \times \Theta(\tau - V(\{p\}, k_1, \dots, k_n))$$

• $\mathcal{F}(\tau)$ is pure NLL & accounts for (correlated) multiple-emission effects

- In order to make $\mathcal{F}(\tau)$ calculable, make the following assumptions
 - Observable is recursively infrared and collinear safe
 - Hold $\alpha_s(Q^2) \ln \tau$ fixed, while taking limit $\tau \to 0$

 \rightarrow Can factorize integrals and neglect kinematic edge effects

Can be interpreted as $lpha_s o 0$ or $s o \infty$ limit

• $\alpha_s \to 0 / s \to \infty$ limit taken by similarity transformation of Lund plane • Can be parametrized in terms of scaling parameter ρ

$$\begin{split} k_{t,l} &\to k_{t,l}' = k_{t,l} \rho^{(1-\xi_l)/a + \xi_l/(a+b)} \\ \eta_l &\to \eta_l' = \eta - \xi_l \frac{\ln \rho}{a+b} , \qquad \text{where} \qquad \xi = \frac{\eta}{\eta_{\max}} \end{split}$$

observable parametrization at one-emission level: $v = (k_t^2/Q^2)^a \exp(-b\eta)$

NLL precision requires scaling to be maintained after additional emissions

• Lorentz transformation defined by shift $\tilde{K} \to K$

$$K^{\mu} = \tilde{K}^{\mu} - X^{\mu} \;, \qquad {\rm where} \qquad X^{\mu} = p_{j}^{\mu} - (1-z)\, \tilde{p}_{i}^{\mu}$$

■ X is small, but is it small enough? Rewrite

$$\Lambda^{\mu}_{\nu}(K,\tilde{K}) = g^{\mu}_{\nu} + \tilde{K}^{\mu}A_{\nu} + X^{\mu}B_{\nu}$$

In NLL limit, coefficients scale as

$$A^{
u} \stackrel{
ho \to 0}{\longrightarrow} 2 \, rac{ ilde{K}X}{ ilde{K}^2} \, rac{ ilde{K}^{
u}}{ ilde{K}^2} - rac{X^{
u}}{ ilde{K}^2} \,, \qquad ext{and} \qquad B^{
u} \stackrel{
ho o 0}{\longrightarrow} rac{ ilde{K}^{
u}}{ ilde{K}^2} \,.$$

Simplify situation by taking a = 1, b = 0 (worst offenders)
 Relative momentum shift of soft emission particle l becomes

$$\begin{split} \Delta p_l^{0,3} / \tilde{p}_l^{0,3} &\sim \rho^{1-\max(\xi_i,\xi_j)} & \xrightarrow{\rho \to 0} 0 \\ \Delta p_l^{1,2} / \tilde{p}_l^{1,2} &\sim \rho^{1-\xi_l} & \xrightarrow{\rho \to 0} 0 \end{split}$$

For hard momenta, leading terms in X^μ cancel exactly Remaining components scale as ρ or stronger

The elusive parton-shower uncertainty

Scale variations

[LesHouches] arXiv:1605.04692, arXiv:1803.07977

- First systematic attempt to estimate PS variations by MCnet groups at LesHouches 2015/2017 →
- Renormalization scale uncertainties based on order α²_s corrections to soft enhanced part of kernels
- Kinematics and evolution variable remain similar among contenders

Momentum conservation

🛟 Fermilab

27

- Sizeable differences between NLL & PS away from $s \to \infty$ limit
- "guesstimate" of uncertainty from momentum mapping NLP resummation needed to improve systematically

Single emission effects

- 4-mom conservation
- PS sectorization
- k_T scale in coll. terms

T scale by unitarity

Herwig angular ordered parton showers

[Bewick,Ferrario-Ravasio,Richardson,Seymour] arXiv:1904.11866, arXiv:2107.04051

Comparison of q_T , q^2 & dot product preserving recoil schemes

Alaric parton shower

[Herren, Krauss, Reichelt, Schönherr, SH] arXiv:2208.06057

Comparison to experimental data from LEP

PanScales parton shower

[van Beekveld, Ferrario Ravasio, Hamilton, Salam, Soto-Ontoso, Soyez, Verheyen] arXiv:2207.09467

- Comparison of different PanScales showers all provably NLL accurate
- Toy PDF, fixed flavor initial state
- Conventional dipole schemes do not reproduce [Parisi,Petronzio] NPB154(1979)427

Fermilab 31

[D. Napoletano, HP2 2022], [Alioli et al.] arXiv:2102.08390

■ NNLO+PS precise predictions for $pp \rightarrow Z$ from Geneva

Parton shower scheme uncertainty

Choice of resolution variable

Fermilab 32

[Bellm at al.] arXiv:1903.12563

- Inclusive p_⊥ spectra for different processes
- Comparison between different MC (Herwig, Sherpa, POWHEG+Herwig)

[Buckley et al.] arXiv:2105.11399

Summary and Outlook

- Lots of activity in parton shower development ...
 - Logarithmic precision [PanScales,Deductor,Herwig,Sherpa,...]
 - Higher-order kernels [Vincia,Sherpa,Herwig,...]
 - Interplay w/ NNLL, CMW [PanScales,Sherpa,...]
- ... and matching to fixed-order calculations
 - Improvements at NLO [Herwig, Pythia, Sherpa,...]
 - Resummation based [Geneva,MINNLOPS]
 - Fully differential [Vincia,UN^XLOPS,TOMTE]
- Still, many questions remain [Campbell et al.] arXiv:2203.11110
 - Systematic treatment of power corrections
 - Massive quark production & evolution
 - Interplay with hadronization
 - ····

Exciting times ahead!

Accuracy of Alaric scheme – Numerical checks

[Herren,Krauss,Reichelt,Schönherr,SH] arXiv:2208.06057

Dire algorithm (red) fails, Alaric (blue) passes

Comparison to experimental data: LEP I

[Herren, Krauss, Reichelt, Schönherr, SH] arXiv:2208.06057

