## **Recent Developments in Event Generators**

Stefan Höche

Fermi National Accelerator Laboratory

QCD@LHC

IJClab Saclay, 29/11/2022



## The Standard Model as we know it



[ATLAS] https://twiki.cern.ch/twiki/bin/view/AtlasPublic/StandardModelPublicResults [CMS] https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsCombined

Fermilab 1



Fermilab 2

#### [Buckley et al.] arXiv:1101.2599 [Campbell et al.] arXiv:2203.11110



- Signal process
- Radiative corrections
- Long-distance interactions
  - Hadronization
  - Particle decays

### Divide and Conquer

- Quantity of interest: Total interaction rate
- Convolution of short & long distance physics

$$\sigma_{p_1p_2 \to X} = \sum_{i,j \in \{q,g\}} \int \mathrm{d}x_1 \mathrm{d}x_2 \underbrace{f_{p_1,i}(x_1,\mu_F^2) f_{p_2,j}(x_2,\mu_F^2)}_{\text{long distance}} \underbrace{\hat{\sigma}_{ij \to X}(x_1x_2,\mu_F^2)}_{\text{short distance}} \underbrace{$$



**Creation States Fermilab** 3

#### [Buckley et al.] arXiv:1101.2599 [Campbell et al.] arXiv:2203.11110



- Signal process
- Radiative corrections
- Long-distance interactions
  - Hadronization
  - Particle decays

### Divide and Conquer

- Quantity of interest: Total interaction rate
- Convolution of short & long distance physics

$$\sigma_{p_1p_2 \to X} = \sum_{i,j \in \{q,g\}} \int \mathrm{d}x_1 \mathrm{d}x_2 \underbrace{f_{p_1,i}(x_1,\mu_F^2) f_{p_2,j}(x_2,\mu_F^2)}_{\text{long distance}} \underbrace{\hat{\sigma}_{ij \to X}(x_1x_2,\mu_F^2)}_{\text{short distance}} \underbrace{$$



🗱 Fermilab

3

#### [Buckley et al.] arXiv:1101.2599 [Campbell et al.] arXiv:2203.11110

### Short distance interactions

- Signal process
- Radiative corrections
- Long-distance interactions
  - Hadronization
  - Particle decays

### Divide and Conquer

- Quantity of interest: Total interaction rate
- Convolution of short & long distance physics

$$\sigma_{p_1p_2 \to X} = \sum_{i,j \in \{q,g\}} \int \mathrm{d}x_1 \mathrm{d}x_2 \underbrace{f_{p_1,i}(x_1,\mu_F^2) f_{p_2,j}(x_2,\mu_F^2)}_{\text{long distance}} \underbrace{\hat{\sigma}_{ij \to X}(x_1x_2,\mu_F^2)}_{\text{short distance}} \underbrace{$$



🛟 Fermilab 🛛 3

Short distance interactions

- Signal process
- Radiative corrections
- Long-distance interactions
  - Hadronization
  - Particle decays

### **Divide and Conquer**

- Quantity of interest: Total interaction rate
- Convolution of short & long distance physics

$$\sigma_{p_1p_2 \to X} = \sum_{i,j \in \{q,g\}} \int \mathrm{d}x_1 \mathrm{d}x_2 \underbrace{f_{p_1,i}(x_1,\mu_F^2) f_{p_2,j}(x_2,\mu_F^2)}_{\text{long distance}} \underbrace{\hat{\sigma}_{ij \to X}(x_1x_2,\mu_F^2)}_{\text{short di$$

[Buckley et al.] arXiv:1101.2599 [Campbell et al.] arXiv:2203.11110



🛟 Fermilab 3

## **Connection to QCD theory**

►  $\hat{\sigma}_{ij \to n}(\mu_F^2)$  → Collinearly factorized fixed-order result at N<sup>x</sup>LO Implemented in fully differential form to be maximally useful Tree level:  $d\Phi_n B_n$ 

Automated ME generators + phase-space integrators

1-Loop level:  $d\Phi_n \left( B_n + V_n + \sum C + \sum I_n \right) + d\Phi_{n+1} \left( R_n - \sum S_n \right)$ 

Automated loop ME generators + integral libraries + IR subtraction 2-Loop level: It depends ...

▶ Individual solutions based on SCET, *q*<sup>*T*</sup> subtraction, P2B

►  $f_i(x, \mu_F^2) \rightarrow \text{Collinearly factorized PDF at NYLO}$ Evaluated at  $O(1 \text{GeV}^2)$  and expanded into a series above  $1 \text{GeV}^2$ DGLAP:  $\frac{\mathrm{d}x x f_a(x, t)}{\mathrm{d} \ln t} = \sum_{b=q,g} \int_0^1 \mathrm{d}\tau \int_0^1 \mathrm{d}z \frac{\alpha_s}{2\pi} [z P_{ab}(z)]_+ \tau f_b(\tau, t) \,\delta(x - \tau z)$ 

Parton showers, dipole showers, antenna showers, ...

Matching: 
$$d\Phi_n \ \frac{S_n}{B_n} \leftrightarrow \frac{dt}{t} dz \ \frac{\alpha_s}{2\pi} P_{ab}(z)$$

► MC@NLO, POWHEG, Geneva, MINNLO<sub>PS</sub>, ...



## Co-design of simulations over the years



🛟 Fermilab 🛛 5

# **Directions of development**

### Much effort focused on parton-shower component recently

- ▶ Phenomenologically interesting: Drives jet production, *b*-tagging, ...
- Experimentally relevant: Often source of largest uncertainty
- Next to hadronization, probably the most important component of MCs

### Fixed-order aspects

- Matching to NLO & merging
  - Negative weight fraction
  - Computing efficiency
- Matching to NNLO calculations
  - Semi-inclusive (Geneva, MINNLO<sub>PS</sub>)
  - Fully differential (Vincia)
- Matching to N<sup>3</sup>LO calculations
  - Fully differential (TOMTE)

### All-order aspects

- NLL precision
- NLO splitting functions
- ► Kinematic edge effects
- Spin correlations in collinear & soft limit
- Sub-leading color effects

🛟 Fermilab

- Threshold effects
- Amplitude evolution

# Why matching & merging?

#### [Prestel,Schulz,SH] arXiv:1905.05120



• Predictions for measured N-jet rates stabilize for  $\approx$  N+2 LO ME-level jets

▶ Poor man's version of NNLO (loops emulated by legs + unitarity constraint)

## Computing efficiency: The cost of multi-jet merging

[HSF Generator WG] arXiv:2004.13687, arXiv:2109.14938

- Event generation will consume significant fraction of resources at LHC soon
- Need to scrutinize both generator usage and underlying algorithms
- Dedicated effort in HEP Software Foundation (HSF)



[ATLAS] CERN-LHCC-2022-005 / LHCC-G-182



## **Computing efficiency: MadGraph Developments**

- New code-generator in MadGraph 5 to generate CUDA, SYCL, Kokkos output for ME computation
- Vectorized code for computations on CPUs
- Included in improved MadEvent framework



#### [A. Valassi et al., ACAT'22 & QCD@LHC 2022]

- Performances of SYCL and Kokkos comparable to direct CUDA
- New computing strategy delivers both portability and performance

|                              |           | ACAT2022                                  |     |          | madevent      |                                    | standalone |               |
|------------------------------|-----------|-------------------------------------------|-----|----------|---------------|------------------------------------|------------|---------------|
| CUDA grid size               |           |                                           |     |          | 8192          |                                    |            | 16384         |
| $gg \rightarrow t\bar{t}ggg$ | MEs       | $t_{\rm TOT} = t_{\rm Mad} + t_{\rm MEs}$ |     |          | Nevents/tTOT  | $N_{\text{events}}/t_{\text{MEs}}$ |            |               |
|                              | precision | [sec]                                     |     |          | [events/sec]  | [MEs/sec]                          |            |               |
| Fortran                      | double    | 1228.2 =                                  | 5.0 | + 1223.2 | 7.34E1 (=1.0) | 7.37E1 (=1.0)                      | —          | —             |
| CUDA                         | double    | 19.6 =                                    | 7.4 | + 12.1   | 4.61E3 (x63)  | 7.44E3 (x100)                      | 9.10E3     | 9.51E3 (x129) |
| CUDA                         | float     | 11.7 =                                    | 6.2 | + 5.4    | 7.73E3 (x105) | 1.66E4 (x224)                      | 1.68E4     | 2.41E4 (x326) |
| CUDA                         | mixed     | 16.5 =                                    | 7.0 | + 9.6    | 5.45E3 (x74)  | 9.43E3 (x128)                      | 1.10E4     | 1.19E4 (x161) |



# **Computing efficiency: Sherpa Developments**

[R. Wang et al., ACAT'22]

- Study of a variety of algorithms & assessment of practicality for LHC background simulations
- First use of new color basis [Melia] arXiv:1509.03297 in a generator
- Cuda for benchmarks, portability through Kokkos



- ► Factor ~10 speedup at low multiplicity, factor ~4 at high multiplicity (fully loaded E5620 CPU (MPI) and V100 GPU)
- Currently being combined with integrator and event generation framework

# **Computing efficiency: Usage of analytics**

[Campbell,Preuss,SH] arXiv:2107.04472, [7 M. Knobbe's talk]

- At HL-LHC, accuracy and precision requirements for a small number of processes drive computing demands:
  - $W^{\pm}/Z/\gamma$ +jets
  - ► tt+jets
  - ...
- ► Up to 2 jets, NLO matrix elements for W/Z/γ/h are known analytically
- Significant speedup out of the box (analytic vs numeric 1-loop ME only)

| Merged Process                                    | Sherpa+                         | Sherpa+                         |
|---------------------------------------------------|---------------------------------|---------------------------------|
| $n \leq 2 @ \text{NLO}$<br>$n \leq 5 @ \text{LO}$ | OpenLoops2/MCFM                 | MadLoop5/MCFM                   |
| $pp \rightarrow Z + nj$                           | $1.83\substack{+0.20 \\ -0.12}$ | $3.01\substack{+0.26\\-0.18}$   |
| $pp \rightarrow W^+ + nj$                         | $1.34\substack{+0.06 \\ -0.07}$ | $1.36\substack{+0.03 \\ -0.03}$ |
| $pp \to W^- + nj$                                 | $1.38\substack{+0.06 \\ -0.04}$ | $1.38\substack{+0.07\\-0.11}$   |



Fermilab 11

## Fixed-order matching: Basic idea



**‡ Fermilab** 12

## Fixed-order matching: Geneva

#### [D. Napoletano's talk at HP<sup>2</sup>]

• Use known resummation in jettiness /  $q_T$  & match to NNLO

| $\mathrm{d}\sigma$          | $d\sigma^{NNLL'}$ | $d\sigma^{res.exp.}$ | $d\sigma^{FO}$       |
|-----------------------------|-------------------|----------------------|----------------------|
| $\mathrm{d}\Phi\mathrm{d}r$ | $d\Phi dr$        | $d\Phi dr$           | $d\Phi  \mathrm{d}r$ |

• Match to shower by vetoing events with  $r_N(\Phi_{N+M}) > r_N$ 



**Fermilab** 13

## Fixed-order matching: Geneva

[G. Marinelli's talk at HP<sup>2</sup>]



### Comparison against experimental data

•  $p_{T,H}$  and ATLAS data



y<sub>H</sub> and CMS data



## Fixed-order matching: MINNLO<sub>PS</sub>

[Lindert,Lombardi,Wiesemann,Zanderighi,Zanoli] arXiv:2208.12660

- WZ production at NNLO QCD × NLO EW



# Fixed-order matching: MINNLO<sub>PS</sub>

[Gavardi.Oleari.Re] arXiv:2204.12602

辈 Fermilab

16

- Di-photon production at the LHC
- QED singular contributions in real-emission corrections treated as fixed order  $\rightarrow$  split off by damping function



[ATLAS] arXiv:2107.09330

## Fixed-order matching: Vincia

[C. Preuss' talk at HP<sup>2</sup>] [Campbell,Li,Preuss,Skands,SH] arXiv:2108.07133

- Fully differential matching technique akin to POWHEG
- Technical implementation based on sector antenna framework
- Configurations absent in antenna-shower approximation simulated using direct  $2 \rightarrow 4$  branchings



U(N)LOPS

[Lönnblad, Prestel] arXiv:1211.4827, [Plätzer] arXiv:1211.5467



- Compute vetoed cross section & complete with real-emission
- Add Sudakov vetoed real-emission cross section & projection
- Can be implemented based on only two inputs (gray boxes)



[Lönnblad, Prestel] arXiv:1211.4827, [Li, Prestel, SH] arXiv:1405.3607

### UN<sup>2</sup>LOPS



Same idea as in ULOPS, but now also adding 2-loop contribution



[Prestel] arXiv:2106.03206, [Bertone, Prestel] arXiv:2202.01082

### TOMTE



► Same idea as in UN<sup>2</sup>LOPS, but now also adding 3-loop contribution

Must pay careful attention to projections (relevant for all UN<sup>X</sup>LOPS)

**Fermilab** 18

[Bertone, Prestel] arXiv:2202.01082

辈 Fermilab

19



- Drell-Yan lepton pair production at LHC
- Stand-in fixed-order calculation for closure tests

## All-order aspects: Parton showers at NLL precision

- How to quantify logarithmic precision of parton showers? [Dasgupta,Dreyer,Hamilton,Monni,Salam] arXiv:1805.09327
- Angular ordered parton showers provably NLL accurate for global observables, but wrong recoil may invalidate this [Bewick,Ferrario Ravasio,Richardson,Seymour] arXiv:1904.11866
- Two problems in commonly used dipole showers [ / talk by S. Ferrario-Ravasio]
  - Correlations across multiple emissions due to recoil strategy
  - Color charge of initial quarks not reflected in soft, wide angle region
- Kinematics problem can be solved by
  - Partitioning of antenna radiation pattern, combined with local or semi-global recoil scheme [Dasgupta,Dreyer,Hamilton,Monni,Salam,Soyez] arXiv:2002.11114 [vanBeekveld,Ferrario Ravasio,Hamilton,Salam,Soto-Ontoso,Soyez] arXiv:2205.02237, arXiv:2207.09467
  - Additive matching of soft to collinear radiator, combined with global recoil scheme [Forshaw,Holguin,Plätzer] arXiv:2003.06400
  - Multiplicative matching of soft to collinear radiator, combined with semi-global recoil scheme [Nagy,Soper] arXiv:2011.04773
  - Multiplicative matching of soft to collinear radiator, combined with global recoil scheme [Herren,Krauss,Reichelt,Schönherr,SH] arXiv:2208.06057



## All-order aspects: Spin correlations

[Hamilton,Karlberg,Salam,Scyboz,Verheyen] arXiv:2111.01161

- Azimuthal dependence of radiation pattern due to spinning gluons should be implemented
- Linear time algorithm known & used in Herwig [Collins] NPB304(1988)794, [Knowles] NPB310(1988)571
- $\begin{array}{c} p_2 \\ p_2 \\ p_3 \\ p_4 \\ p_4 \\ p_5 \\ p_6 \\$
- New: Matching to dipole radiation pattern



## Higher-order corrections: Collinear evolution at NLO

Higher-order DGLAP evolution kernels obtained from factorization



- ▶  $P_{ji}^{(n)}$  not probabilities, but sum rules hold ( $\leftrightarrow$  unitarity constraint) In particular: Momentum sum rule identical between LO & NLO
- Can perform the NLO computation of P<sup>(1)</sup><sub>ji</sub> fully differentially using modified dipole subtraction [Catani,Seymour] hep-ph/9605323

## Higher-order corrections: Collinear evolution at NLO

[Prestel,SH] arXiv:1705.00742

Example: Flavor-changing NLO splitting functions

$$P_{qq'}^{(1)}(z) = C_{qq'}(z) + I_{qq'}(z) + \int d\Phi_{+1} \Big[ R_{qq'}(z, \Phi_{+1}) - S_{qq'}(z, \Phi_{+1}) \Big]$$

- ▶ Real correction  $R_{qq'}$  and subtraction terms  $S_{qq'}$ Difference finite in 4 dimensions  $\rightarrow$  amenable to MC simulation
- Integrated subtraction term and factorization counterterm given by

$$\begin{split} \mathbf{I}_{qq'}(z) &= \int \mathrm{d}\Phi_{+1} S_{qq'}(z, \Phi_{+1}) \\ \mathbf{C}_{qq'}(z) &= \int_{z} \frac{\mathrm{d}x}{x} \left( P_{qg}^{(0)}(x) + \varepsilon \mathcal{J}_{qg}^{(1)}(x) \right) \frac{1}{\varepsilon} P_{gq}^{(0)}(z/x) \\ \mathcal{J}_{qg}^{(1)}(z) &= 2 C_F \left( \frac{1 + (1-x)^2}{x} \ln(x(1-x)) + x \right) \end{split}$$

- Analytical computation of I not needed, as I + P/ε finite generate as endpoint at s<sub>ai</sub> = 0, starting from integrand at O(ε)
- ► All components of P<sup>(1)</sup><sub>qq'</sub> eventually finite in 4 dimensions Can be simulated fully differentially in parton shower

## Higher-order corrections: Collinear evolution at NLO

[Gellersen, Prestel, SH] arXiv:2110.05964

辈 Fermilab

24



• Effects on jet rates in  $e^+e^- \rightarrow$  hadrons at LEP

## Higher-order corrections: Multi-Emission Kernels

[Löschner,Plätzer] arXiv:2112.14454

- Program to define higher-order splitting functions for parton showers
- ► Sudakov-like momentum decomposition → power counting
- Reproduces known soft & double-/triple-collinear splitting functions



### Looking beyond logarithmic accuracy

- Provably NLL accurate parton showers solve long-standing problem NNLL seems on the horizon, but is it the obvious target?
- ▶ Revisit well-established result: Thrust or  $FC_{1-\beta}$  in  $e^+e^- \rightarrow$  hadrons
- Define a shower evolution variable  $\xi = k_T^2/(1-z)$
- ▶ Parton-shower one-emission probability for  $\xi > Q^2 \tau$

$$R_{\rm PS}(\tau) = 2 \int_{Q^2\tau}^{Q^2} \frac{d\xi}{\xi} \int_{z_{\rm min}}^{z_{\rm max}} dz \; \frac{\alpha_s(k_T^2)}{2\pi} C_F\left[\frac{2}{1-z} - (1+z)\right] \Theta(\eta)$$

Approximate to NLL accuracy

$$R_{\rm NLL}(\tau) = 2 \int_{Q^2 \tau}^{Q^2} \frac{d\xi}{\xi} \left[ \int_0^1 dz \; \frac{\alpha_s(k_T^2)}{2\pi} \frac{2 C_F}{1-z} \Theta(\eta) - \frac{\alpha_s(\xi)}{\pi} C_F B_q \right]$$



### Origin of the $lpha_s ightarrow 0$ / $s ightarrow \infty$ limit

Cumulative cross section  $\Sigma(\tau) = e^{-R(\tau)} \mathcal{F}(\tau)$  obtained from all-orders resummed result by Taylor expansion of virtual corrections in cutoff  $\varepsilon$ 

$$\mathcal{F}(\tau) = \int \mathrm{d}^3 k_1 |M(k_1)|^2 \, e^{-R' \ln \frac{\tau}{\varepsilon v_1}} \sum_{m=0}^{\infty} \frac{1}{m!} \left( \prod_{i=2}^{m+1} \int_{\varepsilon v_1}^{v_1} \mathrm{d}^3 k_i |M(k_i)|^2 \right) \\ \times \Theta\left(\tau - V(\{p\}, k_1, \dots, k_n)\right)$$

•  $\mathcal{F}(\tau)$  is pure NLL & accounts for (correlated) multiple-emission effects

- In order to make  $\mathcal{F}(\tau)$  calculable, make the following assumptions
  - Observable is recursively infrared and collinear safe
  - Hold  $\alpha_s(Q^2) \ln \tau$  fixed, while taking limit  $\tau \to 0$ 
    - $\rightarrow$  Can factorize integrals and neglect kinematic edge effects
- ► Breaks momentum conservation and unitarity for finite → Clean NLL result, but unknown kinematic corrections
- How large are effects in regions of a typical measurement?



## Numerical effects away from the limit

#### [Reichelt,Siegert,SH] arXiv:1711.03497



Single emission effects

- 4-mom conservation
- PS sectorization
- ► k<sub>T</sub> scale in coll. terms



- z bounds by unitarity
- k<sub>T</sub> scale by unitarity



- 2-loop CMW in all soft terms
- 2-loop CMW overall

🗱 Fermilab

28

- Simplest process and simplest type of observable, still sizable differences away from  $\tau \to 0$  limit
- How do we quantify the precision of event generators in the intermediate region ("between" NLL and NLO) ?

## **Summary and Outlook**

- Lots of activity in event generator development ...
  - Logarithmic precision of parton showers [PanScales, Herwig, Sherpa,...]
  - Higher-order QCD evolution kernels [Vincia,Sherpa,Herwig,...]
  - Interplay of parton showers w/ NNLL [PanScales,Sherpa,...]
  - Improved & alternative hadronization models [7 talk by T. Menzo]
- ... and matching to fixed-order calculations
  - Novel computing techniques [MadGraph5,Sherpa]
  - Resummation based NNLO matching [Geneva,MINNLOPS]
  - Fully differential (N)NNLO matching [Vincia,UN<sup>X</sup>LOPS,TOMTE]
- Still, many improvements needed [Campbell et al.] arXiv:2203.11110
  - Systematic treatment of kinematic edge effects
  - Massive quark production & evolution
  - ▶ Other exciting areas: *v*s, HI, EIC, ...
  - ▶ ...

### **Exciting times ahead!**



Fermilab 30