Recent Developments in Event Generators

Stefan Höche

Fermi National Accelerator Laboratory

QCD@LHC
IJClab Saclay, 29/11/2022

The Standard Model as we know it

[ATLAS] https://twiki.cern.ch/twiki/bin/view/AtlasPublic/StandardModelPublicResults [CMS] https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsCombined

The toolkit

LHC event generators

- Short distance interactions
- Signal process
- Radiative corrections
- Long-distance interactions
- Hadronization
- Particle decays

Divide and Conquer

- Quantity of interest: Total interaction rate

- Convolution of short \& long distance physics

LHC event generators

- Short distance interactions
- Signal process
- Radiative corrections
- Long-distance interactions
- Hadronization
- Particle decays

Divide and Conquer

- Quantity of interest: Total interaction rate

- Convolution of short \& long distance physics

LHC event generators

- Short distance interactions
- Signal process
- Radiative corrections
- Long-distance interactions
- Hadronization
- Particle decays

Divide and Conquer

- Quantity of interest: Total interaction rate

- Convolution of short \& long distance physics

LHC event generators

- Short distance interactions
- Signal process
- Radiative corrections
- Long-distance interactions
- Hadronization
- Particle decays

Divide and Conquer

- Quantity of interest: Total interaction rate

- Convolution of short \& long distance physics

$$
\sigma_{p_{1} p_{2} \rightarrow X}=\sum_{i, j \in\{q, g\}} \int \mathrm{d} x_{1} \mathrm{~d} x_{2} \underbrace{f_{p_{1}, i}\left(x_{1}, \mu_{F}^{2}\right) f_{p_{2}, j}\left(x_{2}, \mu_{F}^{2}\right)}_{\text {long distance }} \underbrace{\hat{\sigma}_{i j \rightarrow X}\left(x_{1} x_{2}, \mu_{F}^{2}\right)}_{\text {short distance }}
$$

Connection to QCD theory

- $\hat{\sigma}_{i j \rightarrow n}\left(\mu_{F}^{2}\right) \rightarrow$ Collinearly factorized fixed-order result at $\mathrm{N}^{\mathrm{x}} \mathrm{LO}$ Implemented in fully differential form to be maximally useful
Tree level: $\mathrm{d}_{\mathrm{n}} B_{n}$
- Automated ME generators + phase-space integrators 1-Loop level: $\mathrm{d} \Phi_{n}\left(B_{n}+V_{n}+\sum C+\sum I_{n}\right)+\mathrm{d} \Phi_{n+1}\left(R_{n}-\sum S_{n}\right)$
- Automated loop ME generators + integral libraries + IR subtraction 2-Loop level: It depends ...
- Individual solutions based on SCET, q_{T} subtraction, P2B
- $f_{i}\left(x, \mu_{F}^{2}\right) \rightarrow$ Collinearly factorized PDF at $\mathrm{N}^{\mathrm{y}} \mathrm{LO}$

Evaluated at $O\left(1 \mathrm{GeV}^{2}\right)$ and expanded into a series above $1 \mathrm{GeV}^{2}$
DGLAP: $\frac{\mathrm{d} x x f_{a}(x, t)}{\mathrm{d} \ln t}=\sum_{b=q, g} \int_{0}^{1} \mathrm{~d} \tau \int_{0}^{1} \mathrm{~d} z \frac{\alpha_{s}}{2 \pi}\left[z P_{a b}(z)\right]_{+} \tau f_{b}(\tau, t) \delta(x-\tau z)$

- Parton showers, dipole showers, antenna showers, ...

Matching: $\mathrm{d} \Phi_{n} \frac{S_{n}}{B_{n}} \leftrightarrow \frac{\mathrm{~d} t}{t} \mathrm{~d} z \frac{\alpha_{s}}{2 \pi} P_{a b}(z)$

- MC@NLO, POWHEG, Geneva, MINNLOps, ...

Co-design of simulations over the years

Directions of development

Much effort focused on parton-shower component recently

- Phenomenologically interesting: Drives jet production, b-tagging, ...
- Experimentally relevant: Often source of largest uncertainty
- Next to hadronization, probably the most important component of MCs

Fixed-order aspects

- Matching to NLO \& merging
- Negative weight fraction
- Computing efficiency
- Matching to NNLO calculations
- Semi-inclusive (Geneva, MINNLOPS)
- Fully differential (Vincia)
- Matching to $\mathrm{N}^{3} \mathrm{LO}$ calculations
- Fully differential (TOMTE)

All-order aspects

- NLL precision
- NLO splitting functions
- Kinematic edge effects
- Spin correlations in collinear \& soft limit
- Sub-leading color effects
- Threshold effects
- Amplitude evolution

Why matching \& merging?

[Prestel,Schulz,SH] arXiv:1905.05120

- Predictions for measured N-jet rates stabilize for $\approx N+2$ LO ME-level jets
- Poor man's version of NNLO (loops emulated by legs + unitarity constraint)

Computing efficiency: The cost of multi-jet merging

[HSF Generator WG] arXiv:2004.13687, arXiv:2109.14938

- Event generation will consume significant fraction of resources at LHC soon
- Need to scrutinize both generator usage and underlying algorithms
- Dedicated effort in HEP Software Foundation (HSF)

ATLAS Preliminary
2022 Computing Model - CPU: 2031, Aggressive R\&D

Year
[ATLAS] CERN-LHCC-2022-005 / LHCC-G-182

Computing efficiency: MadGraph Developments

[A. Valassi et al., ACAT'22 \& QCD@LHC 2022]

- New code-generator in MadGraph 5 to generate CUDA, SYCL, Kokkos output for ME computation
- Vectorized code for computations on CPUs
- Included in improved MadEvent framework

- Performances of SYCL and Kokkos comparable to direct CUDA
- New computing strategy delivers both portability and performance

CUDA grid size		ACAT2022	madevent		standalone		
		8192		16384			
$g g \rightarrow t \bar{t} g g g$	MEs precision		$\begin{gathered} t_{\mathrm{TOT}}=t_{\mathrm{Mad}}+t_{\mathrm{MEs}} \\ {[\mathrm{sec}]} \end{gathered}$	$N_{\text {events }} / t_{\text {TOT }}$ [events/sec]	$\begin{gathered} N_{\text {events }} / t_{\mathrm{MEs}} \\ {[\mathrm{MEs} / \mathrm{sec}]} \end{gathered}$		
Fortran	double	$1228.2=5.0+1223.2$	7.34 E 1 (=1.0)	7.37 E 1 (=1.0)	-	-	
CUDA	double	$19.6=7.4+12.1$	4.61 E 3 (x63)	7.44 E 3 (x100)	9.10 E 3	9.51 E 3 (x129)	
CUDA	float	$11.7=6.2+5.4$	7.73 E 3 (x 105)	1.66 E 4 (x224)	1.68 E 4	2.41 E 4 (x326)	
CUDA	mixed	$16.5=7.0+9.6$	5.45 E 3 (x74)	9.43 E 3 (x128)	1.10 E 4	1.19E4 (x161)	

Computing efficiency: Sherpa Developments

[R. Wang et al., ACAT'22]

- Study of a variety of algorithms \& assessment of practicality for LHC background simulations
- First use of new color basis [Melia] arXiv:1509.03297 in a generator
- Cuda for benchmarks, portability through Kokkos

- Factor ~ 10 speedup at low multiplicity, factor ~ 4 at high multiplicity (fully loaded E5620 CPU (MPI) and V100 GPU)
- Currently being combined with integrator and event generation framework

Computing efficiency: Usage of analytics

[Campbell,Preuss,SH] arXiv:2107.04472, [〒 M. Knobbe's talk]

- At HL-LHC, accuracy and precision requirements for a small number of processes drive computing demands:
- $W^{ \pm} / Z / \gamma+$ jets
- $t \bar{t}+$ jets
- ...
- Up to 2 jets, NLO matrix elements for $W / Z / \gamma / h$ are known analytically
- Significant speedup out of the box (analytic vs numeric 1 -loop ME only)
$\left.\begin{array}{lcc}\hline \begin{array}{l}\text { Merged Process } \\ n \leq 2 \text { @ NLO } \\ n \leq 5 \text { @ LO }\end{array} & \text { Sherpa+ } & \text { Sherpa+ } \\ \hline p p \rightarrow Z+n j & \text { OpenLoops2/MCFM } & \text { MadLoop5/MCFM } \\ \hline p p \rightarrow W^{+}+n j & 1.83_{-0.12}^{+0.20} & 3.04_{-0.07}^{+0.06}\end{array}\right] 1.36_{-0.03}^{+0.026}$.

Fixed-order matching: Basic idea

Fixed-order matching: Geneva

- Use known resummation in jettiness / q_{T} \& match to NNLO

$$
\frac{\mathrm{d} \sigma}{\mathrm{~d} \Phi \mathrm{~d} r}=\frac{\mathrm{d} \sigma^{\mathrm{NNLL}^{\prime}}}{\mathrm{d} \Phi \mathrm{~d} r}-\frac{\mathrm{d} \sigma^{\text {res.exp. }}}{\mathrm{d} \Phi \mathrm{~d} r}+\frac{\mathrm{d} \sigma^{\mathrm{FO}}}{\mathrm{~d} \Phi \mathrm{~d} r}
$$

- Match to shower bv vetoina events with $r_{N}\left(\Phi_{N+M}\right)>r_{N}$

- Parton shower scheme uncertainty

- Choice of resolution variable

Fixed-order matching: Geneva

[G. Marinelli's talk at HP^{2}]

- Comparison against experimental data

- $p_{T, H}$ and ATLAS data

- y_{H} and CMS data

Fixed-order matching: MINNLOPS

[Lindert,Lombardi,Wiesemann,Zanderighi,Zanoli] arXiv:2208.12660

- WZ production at NNLO QCD \times NLO EW
- Various schemes to combine QCD \& EW corrections \rightarrow associated uncertainty estimates

Fixed-order matching: MINNLOPS

- Di-photon production at the LHC
- QED singular contributions in real-emission corrections treated as fixed order \rightarrow split off by damping function

- Comparison between ATLAS data and MINNLOps

- Previous experimental analysis [ATLAS] arXiv:2107.09330

Fixed-order matching: Vincia

[C. Preuss' talk at HP^{2}]
[Campbell,Li,Preuss,Skands,SH] arXiv:2108.07133

- Fully differential matching technique akin to POWHEG
- Technical implementation based on sector antenna framework
- Configurations absent in antenna-shower approximation simulated using direct $2 \rightarrow 4$ branchings

Fixed-order matching: ${ }^{3}$ LO

[Lönnblad,Prestel] arXiv:1211.4827, [Plätzer] arXiv:1211.5467

U(N)LOPS

- Compute vetoed cross section \& complete with real-emission
- Add Sudakov vetoed real-emission cross section \& projection
- Can be implemented based on only two inputs (gray boxes)

Fixed-order matching: \mathbf{N}^{3} LO

[Lönnblad,Prestel] arXiv:1211.4827, [Li,Prestel,SH] arXiv:1405.3607

UN² LOPS

- Same idea as in ULOPS, but now also adding 2-loop contribution

Fixed-order matching: ${ }^{3}$ LO

TOMTE

- Same idea as in UN² LOPS, but now also adding 3-loop contribution
- Must pay careful attention to projections (relevant for all UN ${ }^{X}$ LOPS)

Fixed-order matching: ${ }^{3}$ LO

[Bertone,Prestel] arXiv:2202.01082

- Drell-Yan lepton pair production at LHC
- Stand-in fixed-order calculation for closure tests

All-order aspects: Parton showers at NLL precision

- How to quantify logarithmic precision of parton showers?
[Dasgupta,Dreyer,Hamilton,Monni,Salam] arXiv:1805.09327
- Angular ordered parton showers provably NLL accurate for global observables, but wrong recoil may invalidate this
[Bewick,Ferrario Ravasio,Richardson,Seymour] arXiv:1904.11866
- Two problems in commonly used dipole showers [\nearrow talk by S. Ferrario-Ravasio]
- Correlations across multiple emissions due to recoil strategy
- Color charge of initial quarks not reflected in soft, wide angle region
- Kinematics problem can be solved by
- Partitioning of antenna radiation pattern, combined with local or semi-global recoil scheme [Dasgupta,Dreyer,Hamilton,Monni,Salam,Soyez] arXiv:2002.11114 [vanBeekveld,Ferrario Ravasio,Hamilton,Salam,Soto-Ontoso,Soyez] arXiv:2205.02237, arXiv:2207.09467
- Additive matching of soft to collinear radiator, combined with global recoil scheme [Forshaw,Holguin,Plätzer] arXiv:2003.06400
- Multiplicative matching of soft to collinear radiator, combined with semi-global recoil scheme [Nagy,Soper] arXiv:2011.04773
- Multiplicative matching of soft to collinear radiator, combined with global recoil scheme [Herren,Krauss,Reichelt,Schönherr,SH] arXiv:2208.06057

All-order aspects: Spin correlations

[Hamilton,Karlberg,Salam,Scyboz, Verheyen] arXiv:2111.01161

- Azimuthal dependence of radiation pattern due to spinning gluons should be implemented
- Linear time algorithm known \& used in Herwig [Collins] NPB304(1988)794, [Knowles] NPB310(1988)571
- New: Matching to dipole radiation pattern

Higher-order corrections: Collinear evolution at NLO

- Higher-order DGLAP evolution kernels obtained from factorization

$$
\begin{aligned}
& D_{j i}^{(0)}(z, \mu)=\delta_{i j} \delta(1-z) \quad \leftrightarrow \\
& \bigcirc \bigodot_{j} \\
& =/ \\
& \bigcirc_{i} \\
& D_{j i}^{(1)}(z, \mu)=-\frac{1}{\varepsilon} P_{j i}^{(0)}(z) \quad \leftrightarrow \\
& \bigodot_{i}-O_{i}^{6^{606}} / \bigodot_{i} \\
& D_{j i}^{(2)}(z, \mu)=-\frac{1}{2 \varepsilon} P_{j i}^{(1)}(z)+\frac{\beta_{0}}{4 \varepsilon^{2}} P_{j i}^{(0)}(z)+\frac{1}{2 \varepsilon^{2}} \int_{z}^{1} \frac{\mathrm{~d} x}{x} P_{j k}^{(0)}(x) P_{k i}^{(0)}(z / x) \\
& \leftrightarrow\left(\bigodot_{i}-0_{i}^{6^{606}}=\right.
\end{aligned}
$$

- $P_{j i}^{(n)}$ not probabilities, but sum rules hold (\leftrightarrow unitarity constraint) In particular: Momentum sum rule identical between LO \& NLO
- Can perform the NLO computation of $P_{j i}^{(1)}$ fully differentially using modified dipole subtraction [Catani,Seymour] hep-ph/9605323

Higher-order corrections: Collinear evolution at NLO

- Example: Flavor-changing NLO splitting functions

$$
P_{q q^{\prime}}^{(1)}(z)=\mathrm{C}_{q q^{\prime}}(z)+\mathrm{I}_{q q^{\prime}}(z)+\int \mathrm{d} \Phi_{+1}\left[\mathrm{R}_{q q^{\prime}}\left(z, \Phi_{+1}\right)-\mathrm{S}_{q q^{\prime}}\left(z, \Phi_{+1}\right)\right]
$$

- Real correction $R_{q q^{\prime}}$ and subtraction terms $S_{q q^{\prime}}$ Difference finite in 4 dimensions \rightarrow amenable to MC simulation
- Integrated subtraction term and factorization counterterm given by

$$
\begin{aligned}
\mathrm{I}_{q q^{\prime}}(z) & =\int \mathrm{d} \Phi_{+1} S_{q q^{\prime}}\left(z, \Phi_{+1}\right) \\
\mathrm{C}_{q q^{\prime}}(z) & =\int_{z} \frac{\mathrm{~d} x}{x}\left(P_{q g}^{(0)}(x)+\varepsilon \mathcal{J}_{q g}^{(1)}(x)\right) \frac{1}{\varepsilon} P_{g q}^{(0)}(z / x) \\
\mathcal{J}_{q g}^{(1)}(z) & =2 C_{F}\left(\frac{1+(1-x)^{2}}{x} \ln (x(1-x))+x\right)
\end{aligned}
$$

- Analytical computation of I not needed, as $\mathrm{I}+\mathcal{P} / \varepsilon$ finite generate as endpoint at $s_{a i}=0$, starting from integrand at $\mathcal{O}(\varepsilon)$
- All components of $P_{q q^{\prime}}^{(1)}$ eventually finite in 4 dimensions Can be simulated fully differentially in parton shower

Higher-order corrections: Collinear evolution at NLO

[Gellersen,Prestel,SH] arXiv:2110.05964

- Effects on jet rates in $e^{+} e^{-} \rightarrow$ hadrons at LEP

Higher-order corrections: Multi-Emission Kernels

[Löschner,Plätzer] arXiv:2112.14454

- Program to define higher-order splitting functions for parton showers
- Sudakov-like momentum decomposition \rightarrow power counting
- Reproduces known soft \& double-/triple-collinear splitting functions

Looking beyond logarithmic accuracy

- Provably NLL accurate parton showers solve long-standing problem NNLL seems on the horizon, but is it the obvious target?
- Revisit well-established result: Thrust or $F C_{1-\beta}$ in $e^{+} e^{-} \rightarrow$ hadrons
- Define a shower evolution variable $\xi=k_{T}^{2} /(1-z)$
- Parton-shower one-emission probability for $\xi>Q^{2} \tau$

$$
R_{\mathrm{PS}}(\tau)=2 \int_{Q^{2} \tau}^{Q^{2}} \frac{d \xi}{\xi} \int_{z_{\min }}^{z_{\max }} d z \frac{\alpha_{s}\left(k_{T}^{2}\right)}{2 \pi} C_{F}\left[\frac{2}{1-z}-(1+z)\right] \Theta(\eta)
$$

- Approximate to NLL accuracy

$$
R_{\mathrm{NLL}}(\tau)=2 \int_{Q^{2} \tau}^{Q^{2}} \frac{d \xi}{\xi}\left[\int_{0}^{1} d z \frac{\alpha_{s}\left(k_{T}^{2}\right)}{2 \pi} \frac{2 C_{F}}{1-z} \Theta(\eta)-\frac{\alpha_{s}(\xi)}{\pi} C_{F} B_{q}\right]
$$

Origin of the $\alpha_{s} \rightarrow 0 / s \rightarrow \infty$ limit

- Cumulative cross section $\Sigma(\tau)=e^{-R(\tau)} \mathcal{F}(\tau)$ obtained from all-orders resummed result by Taylor expansion of virtual corrections in cutoff ε

$$
\begin{gathered}
\mathcal{F}(\tau)=\int \mathrm{d}^{3} k_{1}\left|M\left(k_{1}\right)\right|^{2} e^{-R^{\prime} \ln \frac{\tau}{\varepsilon v_{1}}} \sum_{m=0}^{\infty} \frac{1}{m!}\left(\prod_{i=2}^{m+1} \int_{\varepsilon v_{1}}^{v_{1}} \mathrm{~d}^{3} k_{i}\left|M\left(k_{i}\right)\right|^{2}\right) \\
\times \Theta\left(\tau-V\left(\{p\}, k_{1}, \ldots, k_{n}\right)\right)
\end{gathered}
$$

- $\mathcal{F}(\tau)$ is pure NLL \& accounts for (correlated) multiple-emission effects
- In order to make $\mathcal{F}(\tau)$ calculable, make the following assumptions
- Observable is recursively infrared and collinear safe
- Hold $\alpha_{s}\left(Q^{2}\right) \ln \tau$ fixed, while taking limit $\tau \rightarrow 0$
\rightarrow Can factorize integrals and neglect kinematic edge effects
- Breaks momentum conservation and unitarity for finite τ \rightarrow Clean NLL result, but unknown kinematic corrections
- How large are effects in regions of a typical measurement?

Numerical effects away from the limit

[Reichelt,Siegert,SH] arXiv:1711.03497

- Simplest process and simplest type of observable, still sizable differences away from $\tau \rightarrow 0$ limit
- How do we quantify the precision of event generators in the intermediate region ("between" NLL and NLO) ?

Summary and Outlook

- Lots of activity in event generator development ...
- Logarithmic precision of parton showers [PanScales,Herwig,Sherpa,...]
- Higher-order QCD evolution kernels [Vincia,Sherpa,Herwig,...]
- Interplay of parton showers w/ NNLL [PanScales,Sherpa,...]
- Improved \& alternative hadronization models [\nearrow talk by T. Menzo]
- ... and matching to fixed-order calculations
- Novel computing techniques [MadGraph5,Sherpa]
- Resummation based NNLO matching [Geneva,MINNLOps]
- Fully differential (N)NNLO matching [Vincia,UN ${ }^{x}$ LOPS,TOMTE]
- Still, many improvements needed [Campbell et al.] arXiv:2203.11110
- Systematic treatment of kinematic edge effects
- Massive quark production \& evolution
- Other exciting areas: $\nu \mathrm{s}, \mathrm{HI}, \mathrm{EIC}, \ldots$
- ...

Exciting times ahead!

