Towards precision event simulation for collider experiments

Stefan Höche

Fermi National Accelerator Laboratory

EFI Seminar Chicago, 12/09/2019

Event generators in 1979

[Andersson, Gustafson, Ingelman, Sjöstrand] Phys. Rept. 97(1983)31

- ► Lund string model: ~ like rubber band that is pulled apart and breaks into pieces, or like a magnet broken into smaller pieces.
- Complete description of 2-jet events in $e^+e^- \rightarrow$ hadrons

Event generators in 1979

[Andersson, Gustafson, Ingelman, Sjöstrand] Phys. Rept. 97(1983)31

DIPROVITINE EDIT(N)

SUBROUTINE JETGEN(N) COMMON /JET/ K(100+2)+ P(100+5) COMMON /PAR/ PUD+ PS1+ SIGMA+ CX2+ EBEG+ WFIN+ IFLBEG COMMON /DATA1/ MESO(9:2); CMIX(6:2); PMAS(19) IFLS6N=(1D-IFLBEG)/5 N=2. SERES 1-0 C 1 FLAVOUR AND PT FOR FIRST QUARK IEL 1=LABS(IEL BES) PT1=SISMA*SORT(-ALOS(RANF(D))) PHT1=6.2832#RANF(D) PY1=PT1+SIN(PHI1) C 2 FLAVOUR AND PT FOR NEXT ANTIQUARK IFL2=1+INT(RANF(0)/PUD) PT2=SIGMA*SQRT(-ALOG(RANF(D))) PHI2=6.2832*RANF(0) P12=P12+COS(PH12) PY2=PT2+SIN(PH12) C 3 MESON FORMED, SPIN ADDED AND FLAVOUR MIXED K(1+1)=MESO(3*(IFL1-1)+1FL2+IFLSGN) ISPIN=INT(PS1+RANE(0)) IF(K(I:1).LE.6) GOTO 110 TNIX=RANE(D) KM=K(I+1)-&+3+ISPIN K(1,2)=8+9+18PIN+INT(THIY=CHIT(KH,1))+INT(THIX=CHIV(KH,2)) C 4 MESON MASS FROM TABLE, PT FROM CONSTITUENTS 110 P(1:5)=PMAS(K(1:2)) P(1,1)=PT1+PT2 P(1,2)=PY1+PY2 PHTS=P(1+1)##2+P(1+2)##2+P(1+5)##2 C 5 RANDOM CHOICE OF X=(E+PZ)MESON/(E+PZ)AVAILABLE GIVES E AND PZ INPANE (O) IF(RANF(D),LT,C12) X=1,-X**(1,/3,) P(1,3)=(X*N-PMTS/(X*N))/2, P(1+4)=(X+N+PHTS/(X+N))/2. C 6 IF UNSTABLE, DECAY CHAIN INTO STABLE PARTICLES 120 [PD=[PD+1 IF(K(IPD:2).6E.8) CALL DECAY(IPD:1) IF(IPD IT I AND I IF 94) GOTO 120 C 7 FLAVOUR AND PT OF GUARK FORMED IN PAIR WITH ANTIQUARK ABOVE C & IF ENOUGH E+PZ LEFT+ GO TO 2 IF(W.GT.WFIN.AND.I.LE.95) GOTO 100 RETHON END SUBROUTINE LIST(N) COMMON /JET/ K(100,2), P(100,5) COMMON /DATA3/ CHA1(9): CHA2(19): CHA3(2) WRITE(6+110) DO 100 1=1-N IF(K(1,1).GT.0) C1=CHA1(K(1,1)) IF(K(1,1).LE.0) IC1=-K(1,1) C3#CHA3((47-K(1,2))/20) IF(K(1,4),GT.0) WRITE(A,120) I, C1, C2, C3, (P(1,1), J=1.5) 100 IF(K(1+1).LE.0) WRITE(6+130) 1+ IC1+ C2+ C3+ (P(1+J)+ J=1+5)

- 100 IF(R(1:1),LE.0) WRITE(6:130) I; IC1; C2; C3; (P(1;j); J=1:5) RETURN 110 FORMAT(////T11; I'; T17; 'OR1'; T26; 'PART'; T32; 'STAR';
- \$T44+'PX'+T56+'PY'+T65+'PZ'+T80+'E'+T92+'B'AB
- 120 FORMAT(10X+12+4X+A2+1X+2(4X+A4)+5(4X+F8,1))

```
130 FORMAT(1DX+12+4X+11+12+2(4X+44)+5(4X+F8,1))
```

```
END
```

SUBBOUTINE DECAY(IPD.I) COMMON /JET/ K(100+2)+ P(100+5) COMMON /DATA1/ MESO(9:2); CMII(6:2); PMAS(19) COMMON /DATA2/ 10CO(12)+ CBR(29)+ K0P(29+3) DIMENSION U(3) + BE(3) DECAY CHANNEL CHOICE: GIVES DECAY PRODUCTS IDC=IDCD(K(IPD+2)-7) 100 10C=10C+1 IF(TRR.ST.CRR(10C)) GOTO 100 DO 110 I1=I+1+I+ND K(I1:1)=-1PU K(I1:2)=KDP(1DC:11-1) 110 P(I1:5)=PNAS(K(I1:2)) C 2 IN THREE-PARTICLE DECAY CHOICE OF INVARIANT MASS OF PRODUCTS 2+3 IF(ND.E9.2) GOTO 130 SA=(P(IPD,5)+P(I+1,5))++2 SB=(P(IPD,5)-P(I+1,5))++2 SD=(P(I+2+5)-P(I+3+5))++2 TDU=(SA-SD)+(SR-SC)/(4.4S98T(SR+SC)) 1F(K(IP0:2).6E.11) TDU=SQRT(SB+SC)+TOU++3 120 SX=SC+(SS-SC)+RANF(0) TDF=S9RT((SI-SA)+(SI-SB)+(SI-SC)+(SI-SD))/SX JF(K(IP0:2).6E.11) TDF=SX+TDF++3 IF (RANE(0) *TDU.GT.TDF) GOTO 120 P(100,5)=SeRT(ST) C 3 TWO-PARTICLE DECAY IN CN, TWICE TO SINULATE THREE-PARTICLE DECAY 130 D0 160 IL=1:ND-1 10=(IL-1)*100-(IL-2)*IPD 11=1+1L 12=(N0-1L-1)+100-(ND-1L-2)+(1+1L+1) PA=SQRT((P(I0:5)++2-(P(I1:5)+P(I2:5))++2)+ 4(P(10,5)**2-(P(11,5)-P(12,5))**2))/(2.*P(10,5)) 140 U(3)=2.+RANF(0)-1. PH1=6.2532*RANE(0) U(1)=SQRT(1,-U(3)++2)+COS(FH1) U(2)=SQRT(1,-U(3)++2)+SIN(PH1) U(2)=BGMT(1,-U(3)**2)*S1N(PH1) TDA=1,-(U(1)*P(10,1)+U(2)*P(10,2)+U(3)*P(10,3))**2/ &(P(10,1)**2+P(10,2)**2+P(10,3)**2) JF(K(IPD+2).6E.11.AND.IL.EQ.2.AND.RANF(0).6T.TDA) 60T0 140 D0 150 J=1+3 P([1+J)=PA+U(J) 150 P(12+J)=-PA+U(J) P(11+4)=SeRT(PA++2+P(11+5)++2) 1AD P(12,4)=S9RT(PA**2+P(12,5)**2) C 4 DECAY PRODUCTS LORENTZ TRANSFORMED TO LAB SYSTEM 00 190 IL=ND-1-1-1 10=(1L-1)*100-(1L-2)*1PD 00 170 J=1+3 GA=P(I0:4)/P(I0:5) DO 190 11-1+1L+1+ND REPERF(1) +P(11,1) +RE(2) +P(11,2) +RE(3) +P(11,3) D0 180 J=1+3 180 P(11+J)=P(11+J)+GA+(GA/(1++GA)+BEP+P(11++))+BE(J) 190 P(11+4)=6A*(P(11+4)+BEP) 1-1+ND RETURN END

> \approx 200 punched cards Fortran code

COMMON /JET/ K(100.2), P(100.5) COMMON /EDPAR/ ITHROW, PZMIN, PMIN, THETA, PMI, BETA(3) 8FAL POT(3.3), PP(3) C 1 THROW AWAY NEUTRALS OF UNSTABLE OF WITH TOO LOW PZ OF P 13"0 D0 110 I=1,N IF(ITHROW.GE.1.AND.K(1.2).GE.8) GOTO 110 IF(ITHROW.GE.2.AND.K(1.2).GE.6) GOTO 110 IF(ITHROW.GE.3.AND.K(1.2).E0.1) GOTO 110 IF(P(1+3).LT.PZMIN.OR.P(1+4)**2-P(1+5)**2.LT.PMIN**2) GOTO 110 R(11,1)=IDIM(R(1,1),D) K(11,2)=K(1,2) D0 100 J=1,5 100 P(11,J)=P(1,J) 110 CONTINUE N=11 C 2 ROTATE TO GIVE JET PRODUCED IN DIRECTION THETA; PH1 IF(THETA.LT.1E-4) GOTO 140 ROT(1+1)=COS(THETA)+COS(PHI) POT(1,2)=_SIN(941) ROT(1+3)=SIN(THETA)+COS(PH1) ROT(2:1)=COS(THETA)+SIN(PH1) ROT(2:3)=SIN(THETA)*SIN(PHI) ROT(3:1)=-SIN(THETA) ROT(3:2)=0. ROT(3,3)=COS(THETA) 00 130 I=1.N 00 120 J=1.3 120 PR(J)=P(T_1) 130 P(1,J)=ROT(J,1)+PR(1)+ROT(J,2)+PR(2)+RCT(J,3)+PR(3) C 3 OVERALL LORENTZ BOOST GIVEN BY BETA VECTOR 140 IF(BETA(1) ++2+BETA(2) ++2+BETA(3) ++2.LT.1E-8) RETURN GA=1./SORT(1.-BETA(1)++2-BETA(2)++2-BETA(3)++2 no 180 I=1+N BEP=BETA(1)+P(1+1)+BETA(2)+P(1+2)+BETA(3)+P(1+3) 00 150 J=1,3 150 P(1,J)=P(1,J)+GA*(GA/(1,+GA)*BEP+P(1,4))*BETA(J) 160 P(1+4)=GA+(P(1+4)+BEP) RETURN END BLOCK DATA COMMON /PAR/ PUD, PS1, SIGMA, CX2, EBEG, WFIN, IFLBEG COMMON /E0PAR/ ITHROW, PZMIN, PMIN, THETA, PHI, BETA(3) COMMON /DATA1/ MEE0(9:2); CMIX(2:2); PHAS(19) COMMON /DATA2/ IDCO(12); CBR(29); KOP(29:3) COMMON /DATA2/ 1DCD(12); CBM(29); KDP(29,3) COMMON /DATA3/ CHA1(9); CHA2(19); CHA3(2) DATA PUD/D.4/; PS1/0.5/; S1GMA/350,/; CX2/0.77/; &EBEG/10DD0./+ WF1N/10D./+ IFLBEG/1/ DATA ITHROW/1/; PZMIN/0./; PMIN/0./; THETA;PHI;DETA/5+0./ DATA MED0/7:1:3:2:8:5:4:6:9:7:2:4:1:8:6:3:5:9: DATA CHIX/2+0.5:1::2+0.5:1::2+0.25:0.5:2+0.1:1 0015 (11/2005), AU.201710.10176.11.0.406.02.03710.70541.1 DATA KDP/1:13812:112:21812:1112:12814:4-7.544.6-57.5722.2 #1:2:44.6-2112:11.00176.312117-10.1124.002.0018.218.018.012.0 43:3:6:3:5:7:3:9:0:0:8:6:3:6:9:9:14+0:8:4+0:8:0/ DATA CHA1/'UD':'DU':'UD':'SU':'SU':'DS':'SD':'UU':'DD':'SS'/ DATA CHA2/ GANH, PI+', V+', V+', K+', K+', K+', KB+O', FBD', PIO', 'ETA', &'ETAP', 'RH0+', RH0-', 'K++', 'X++', 'K+O', 'KB+O', 'RH0', 'RH0', 'CHA', DATA CHA3/' 's'STAR'/

Experimental situation in 2019

Event generators in 2019

- LO Matrix Element generators and Loop-ME Generators
- Parton showers, mostly based on dipole/antenna picture
- Multiple interaction models possibly interleaved with shower
- Hadronization models string/cluster fragmentation
- Hadron decay packages
- Photon emission generators YFS formalism or QED shower

Much of the development focused on precision

Accuracy of the method: Jets at the LHC

[Prestel,SH] arXiv:1506.05057

Accuracy of the method: Photons at the LHC

[ATLAS] arXiv:1704.03839

Accuracy versus precision

[A. David]

Fixed-order uncertainties

[Bern et al.] arXiv:1304.1253, arXiv:1412.4775 [Anger,Febres Cordero,Maître,SH] arXiv:1712.08621

- ▶ W^{\pm} +jets at 13 TeV LHC, computed with BlackHat+Sherpa
- Largely reduced uncertainties at NLO, but more importantly good agreement for different functional forms of scale, including several variants of MINLO [Hamilton,Nason,Zanderighi] arXiv:1206.3572

Parton-shower uncertainties?

[LesHouches] arXiv:1605.04692, arXiv:1803.07977

Outline of this Talk

Lessons learned

- Fueled by the NLO revolution, much of the MC community worked on precision fixed-order simulations during the last decade(s)
- This lead to much improved agreement with data and tremendous new capabilities of the generators, but left the resummation behind
- Many of the challenges at higher luminosity / energy require increased precision in the parton-shower simulation (we cannot hope to compute, say, 8-jet final states at NLO)

Towards a possible solution

- Understand what precision means in the context of a parton shower
 - Parton shower is momentum conserving, analytics are not
 - Parton shower is unitary, analytic calculations mostly not
- ► Improve formal precision of parton shower, but keep its good features
 - Add higher-order corrections to splitting functions
 - Respect probability and momentum conservation

What is a parton shower?

Radiative corrections as a branching process

[Marchesini, Webber] NPB238(1984)1, [Sjöstrand] PLB157(1985)321

- Make two well motivated assumptions
 - Parton branching can occur in two ways

- Evolution conserves probability
- ► The consequence is Poisson statistics
 - Let the decay probability be λ
 - Assume indistinguishable particles \rightarrow naive probability for n emissions

$$P_{\text{naive}}(n,\lambda) = \frac{\lambda^n}{n!}$$

Probability conservation (i.e. unitarity) implies a no-emission probability

$$P(n, \lambda) = \frac{\lambda^n}{n!} \exp\{-\lambda\} \longrightarrow \sum_{n=0}^{\infty} P(n, \lambda) = 1$$

• In the context of parton showers $\Delta = \exp\{-\lambda\}$ is called Sudakov factor

Radiative corrections as a branching process

Decay probability for parton state in collinear limit

$$\lambda \to \frac{1}{\sigma_n} \int_t^{Q^2} \mathrm{d}\bar{t} \, \frac{\mathrm{d}\sigma_{n+1}}{\mathrm{d}\bar{t}} \approx \sum_{\text{jets}} \int_t^{Q^2} \frac{\mathrm{d}\bar{t}}{\bar{t}} \int \mathrm{d}z \frac{\alpha_s}{2\pi} P(z)$$

Parameter t identified with evolution "time"

• Splitting function P(z) spin & color dependent

$$P_{qq}(z) = C_F \left[\frac{2}{1-z} - (1+z) \right] \qquad P_{gq}(z) = T_R \left[z^2 + (1-z)^2 \right]$$
$$P_{gg}(z) = C_A \left[\frac{2}{1-z} - 2 + z(1-z) \right] + (z \leftrightarrow 1-z)$$

Matching to soft limit requires some care, because full soft emission probability present in all collinear sectors

$$\frac{1}{t} \frac{2}{1-z} \xrightarrow{z \to 1} \frac{p_i p_k}{(p_i q)(q p_k)}$$

Soft double counting problem [Marchesini,Webber] NPB310(1988)461

Color coherence and the dipole picture

[Marchesini,Webber] NPB310(1988)461

► Individual color charges inside a color dipole cannot be resolved if gluon wavelength larger than dipole size → emission off "mother"

► Net effect is destructive interference outside cone with opening angle set by emitting color dipole → phase space for soft radiation halved

[Gustafsson,Pettersson] NPB306(1988)746

- Alternative description of effect in terms of dipole evolution
- Modern approach is to partial fraction soft eikonal and match to collinear sectors [Catani,Seymour] hep-ph/9605323

$$\frac{p_i p_k}{(p_i p_j)(p_j p_k)} \rightarrow \frac{1}{p_i p_j} \frac{p_i p_k}{(p_i + p_k) p_j} + \frac{1}{p_k p_j} \frac{p_i p_k}{(p_i + p_k) p_j}$$

$$\stackrel{k}{\longrightarrow} \stackrel{j \quad i}{\longrightarrow} \stackrel{k \quad j \quad i}{\longrightarrow} \stackrel{k \quad j \quad i}{\longrightarrow} + \stackrel{j \quad i}{\longrightarrow} \stackrel{j \quad i}{\longrightarrow} + \stackrel{j \quad i}{\longrightarrow} \stackrel{j \quad i}{\longrightarrow} + \stackrel{j \quad i}{\longrightarrow} \stackrel{j \quad i}{\longrightarrow} \stackrel{j \quad i}{\longrightarrow} + \stackrel{j \quad i}{\longrightarrow} \stackrel{j$$

Color coherence and the dipole picture

- Splitting kernels become dependent on anti-collinear direction usually defined by color spectator in large- N_c limit
- Singularity confined to soft-collinear region only captures all coherence effects at leading color, NLL

$$\frac{1}{1-z} \to \frac{1-z}{(1-z)^2 + \kappa^2} \qquad \kappa^2 = \frac{k_{\perp}^2}{Q^2}$$

Complete set of leading-order splitting functions now given by

$$\begin{aligned} P_{qq}(z,\kappa^2) &= C_F \left[\frac{2(1-z)}{(1-z)^2 + \kappa^2} - (1+z) \right] \\ P_{qg}(z,\kappa^2) &= C_F \left[\frac{1+(1-z)^2}{z} \right], \qquad P_{gq}(z,\kappa^2) = T_R \left[z^2 + (1-z)^2 \right] \\ P_{gg}(z,\kappa^2) &= 2 C_A \left[\frac{1-z}{(1-z)^2 + \kappa^2} + \frac{1}{z} - 2 + z(1-z) \right] \end{aligned}$$

 Close correspondence to principal value regularization [Curci,Furmanski,Petronzio] NPB175(1980)27 What is "precision" in the parton-shower context?

What is "precision" in the parton-shower context?

- Parton shower proven to be NLL accurate for simple observables, provided that soft double-counting removed and 2-loop cusp anomalous dimension included [Catani,Marchesini,Webber] NPB349(1991)635
- More complicated observables require detailed analysis, leading color approximation and kinematics mapping typically problematic [Dasgupta,Dreyer,Hamilton,Monni,Salam] arXiv:1805.09327
- ▶ For >25 years noone determined *numerically* the meaning of this
- Take a first stab at it:
 - Design a parton shower that reproduces NLL exactly
 - Figure out what differences are compared to plain PS
 - Assess effects one-by-one and compare numerically
- Diffcult due to vast amount of analytic results, hence
 - ▶ Keep it simple → additive observables in e⁺e⁻ → hadrons (i.e. Thrust, BKS [Berger,Kucs,Sterman], FC [Banfi,Salam,Zanderighi])
 - Use established, semi-analytic Caesar method as a reference [Banfi,Salam,Zanderighi] hep-ph/0407286

Kinematics and parametrization of observables

[Banfi,Salam,Zanderighi] hep-ph/0407286

 \blacktriangleright Contribution of one emission with momentum k to observable v

where $k^{\mu} = (1-z)p^{\mu} + \beta n^{\mu} + k^{\mu}_{T}$ is soft-gluon momentum

On-shell condition determines kinematics

$$\beta = \frac{k_T^2/Q^2}{1-z} \qquad \rightarrow \qquad \eta = \log \frac{1-z}{k_T/Q}$$

► Additive observables → emissions contribute as simple sum

$$v = V(\{p\}, \{k\}) = \sum_{i} V(k_i)$$

▶ Prime example: Thrust in e^+e^- →hadrons

$$V(k) = \frac{p_-}{Q} = \frac{k_T}{Q}e^{-\eta} \qquad \rightarrow \qquad a = 1, \quad b = 1$$

NLL resummation for simple additive observables

[Banfi,Salam,Zanderighi] hep-ph/0407286

► Need one-emission probability for emissions harder than v to compute Sudakov factor → irregularly shaped region in k_T, η (Lund) plane Define suitable "evolution" variable to transform to a triangle

• One-emission probability becomes $(\xi = Q^2 v^{2/(a+b)})$

$$R_{\rm NLL}(v) = 2 \int_{Q^2 v}^{Q^2} \frac{2}{a+b} \frac{d\xi}{\xi} \left[\int_0^1 dz \; \frac{\alpha_s(k_T^2)}{2\pi} \frac{2C_F}{1-z} \Theta(\eta) - \frac{\alpha_s(\xi)}{\pi} C_F B_q \right]$$

• Cumulative cross section $\Sigma(v) = 1/\sigma \int^v d\bar{v} (d\sigma/d\bar{v})$ given by

$$\Sigma_{\rm NLL}\left(v\right) = e^{-R_{\rm NLL}\left(v\right)} \mathcal{F}\left(v\right)$$

 $\mathcal{F}(v) = \lim_{\epsilon \to 0} \mathcal{F}_{\epsilon}(v)$ is pure NLL, accounting for multiple emissions

Parton shower for simple additive observables

Integrated one-emission probability in parton shower

$$R_{\rm PS}(v) = 2 \int_{Q^2 v}^{Q^2} \frac{d\xi}{\xi} \int_{z_{\rm min}}^{z_{\rm max}} dz \, \frac{\alpha_s(k_T^2)}{2\pi} \, C_F\left[\frac{2}{1-z} - (1+z)\right] \Theta(\eta)$$

z-limits from momentum conservation, $\Theta(\eta)$ removes soft double-counting $\blacktriangleright \Sigma_{PS}(v)$ determined by unitarity (i.e. Poisson statistics)

• Find unified NLL/PS expressions for R(V) and $\Sigma(v)$

$$\Sigma(v) = \exp\left\{-\int_{v} \frac{d\xi}{\xi} R'_{>v}(\xi) - \int_{v_{\min}}^{v} \frac{d\xi}{\xi} R'_{
$$\times \sum_{m=0}^{\infty} \frac{1}{m!} \left(\prod_{i=1}^{m} \int_{v_{\min}} \frac{d\xi_i}{\xi_i} R'_{$$$$

where

$$R'_{\lessgtr v}(\xi) = \frac{\alpha_s^{\lessgtr v, \text{soft}}(\mu_{\lessgtr}^2)}{\pi} \int_{z^{\min}}^{z^{\max}_{\lessgtr v, \text{soft}}} dz \frac{C_{\text{F}}}{1-z} - \frac{\alpha_s^{\lessgtr v, \text{coll}}(\mu_{\lessgtr v}^2)}{\pi} \int_{z^{\min}}^{z^{\max}_{\lessgtr v, \text{coll}}} dz C_{\text{F}} \frac{1+z}{2}$$

Differences between pure NLL and parton shower

[Reichelt,Siegert,SH] arXiv:1711.03497

► Isolate differences in terms of resolved/unresolved splitting probability:

$$R'_{\leq v}(\xi) = \frac{\alpha_s^{\leq v, \text{soft}}(\mu_{\leq}^2)}{\pi} \int_{z^{\min}}^{z_{\leq v, \text{soft}}} dz \, \frac{C_{\text{F}}}{1-z} - \frac{\alpha_s^{\leq v, \text{coll}}(\mu_{\leq v}^2)}{\pi} \int_{z^{\min}}^{z_{\leq v, \text{coll}}^{\max}} dz \, C_{\text{F}} \frac{1+z}{2} dz$$

	NLL	Parton Shower		NLL	Parton Shower
$z_{>v,\text{soft}}^{\max}$	$1 - (\xi/Q^2)^{\frac{a+b}{2a}}$		$\overline{z_{>v,\text{coll}}^{\max}}$	1	$1 - (\xi/Q^2)^{\frac{a+b}{2a}}$
$\mu^2_{>v,\text{soft}}$	$\xi(1-z)$	$\frac{2b}{a+b}$	$\mu^2_{>v,\text{coll}}$	ξ	$\xi(1-z)^{\frac{2b}{a+b}}$
$\alpha_s^{>v,\text{soft}}$	2-loop CMW		$\alpha_s^{>v,\text{coll}}$	1-loop	2-loop CMW
$z_{< v, \text{soft}}^{\max}$	$1 - v^{\frac{1}{a}}$	$1 - (\xi/Q^2)^{\frac{a+b}{2a}}$	$\overline{z_{< v, \text{coll}}^{\max}}$	0	$1 - (\xi/Q^2)^{\frac{a+b}{2a}}$
$\mu^2_{$	$Q^2 v^{\frac{2}{a+b}} (1-z)^{\frac{2b}{a+b}}$	$\xi(1-z)^{\frac{2b}{a+b}}$	$\mu^2_{$	n.a.	$\xi(1-z)^{\frac{2b}{a+b}}$
$\alpha_s^{$	1-loop	2-loop CMW	$\alpha_s^{$	n.a.	2-loop CMW

► Can cast pure NLL into PS language by using NLL expressions in PS

- Can study each effect in detail by reverting changes back to PS
- Dictionary for conversation between MC authors and theorists

Baseline for comparison

► Modified parton shower exactly reproduces pure NLL result ► E_{cms} =91.2 GeV, $\alpha_s(M_Z) = 0.118$ fixed flavor $n_f = 5$

Local four momentum conservation and unitarity

► NLL→PS in $\mu^2_{>v,coll}$ (conventional)

- ► NLL→PS in $z_{< v, \text{soft}}^{\max}$ (from PS unitarity)
- ► NLL→PS in $\mu^2_{<v,\text{soft}}$ (from PS unitarity)

Running coupling and global momentum conservation

- ► NLL→PS in 2-loop CMW < v, soft (from PS unitarity)
- NLL→PS in 2-loop CMW overall (conventional)

 NLL→PS in observable (use experimental definition)

Overall comparison NLL / PS / Dipole Shower

- Tuned comparison of differences between formally equivalent calculations
 Simplest process and simplest observable, but still sizable differences
- ▶ Origin of differences traced to treatment of kinematics & unitarity
- ► At NLL accuracy, none of the methods is formally better than another → Difference is a systematic uncertainty & needs to be kept in mind

How to make parton showers more precise? Part I: Collinear limit

How to make parton showers more precise?

- ► Formulate parton-shower algorithm at NLO [Nagy,Soper] arXiv:1705.08093 Naturally, NLO DGLAP evolution must be part of the full solution
- NLO DGLAP splitting kernels known since long [Curci,Furmanski,Petronzio] NPB175(1980)27, PLB97(1980)437 [Floratos,Kounnas,Lacaze] NPB192(1981)417
- ► So far not implemented in parton showers because
 - ▶ NLO-calculation $4-2\varepsilon$ dimensional, but parton showers 4D
 - Overlap with soft-gluon resummation must be treated at NLO
- Focus on purely collinear corrections for a start Flavor-changing case is simplest but requires all the technology:
 - Redefine time-like Sudakovs to recover NLO DGLAP evolution [Jadach,Skrzypek] hep-ph/0312355
 - \blacktriangleright Phase-space factorization and kinematics for $2 \to 4$ transitions $_{\rm [Prestel,SH]}$ arXiv:1705.00742
 - ► Negative NLO corrections → weighted veto algorithm [Schumann,Siegert,SH] arXiv:0912.3501, [Lönnblad] arXiv:1211.7204

Time-like parton showers and the DGLAP equation

DGLAP equation for fragmentation functions

$$\frac{\mathrm{d}x \, D_a(x,t)}{\mathrm{d}\ln t} = \sum_{b=q,g} \int_0^1 \mathrm{d}\tau \int_0^1 \mathrm{d}z \, \frac{\alpha_s}{2\pi} \left[z P_{ab}(z) \right]_+ \tau D_b(\tau,t) \, \delta(x-\tau z)$$

• Define plus prescription $[zP_{ab}(z)]_{+} = \lim_{\varepsilon \to 0} zP_{ab}(z,\varepsilon)$

$$P_{ab}(z,\varepsilon) = P_{ab}(z) \Theta(1-z-\varepsilon) - \delta_{ab} \sum_{c \in \{q,g\}} \frac{\Theta(z-1+\varepsilon)}{\varepsilon} \int_0^{1-\varepsilon} \mathrm{d}\zeta \,\zeta \, P_{ac}(\zeta)$$

Rewrite for finite ε

$$\frac{\mathrm{d}\ln D_a(x,t)}{\mathrm{d}\ln t} = -\sum_{c=q,g} \int_0^{1-\varepsilon} \mathrm{d}\zeta \,\zeta \,\frac{\alpha_s}{2\pi} P_{ac}(\zeta) + \sum_{b=q,g} \int_x^{1-\varepsilon} \frac{\mathrm{d}z}{z} \,\frac{\alpha_s}{2\pi} \,P_{ab}(z) \,\frac{D_b(x/z,t)}{D_a(x,t)}$$

First term is logarithmic derivative of Sudakov factor

$$\Delta_a(t_0, t) = \exp\left\{-\int_{t_0}^t \frac{\mathrm{d}\bar{t}}{\bar{t}} \sum_{c=q,g} \int_0^{1-\varepsilon} \mathrm{d}\zeta \zeta \frac{\alpha_s}{2\pi} P_{ac}(\zeta)\right\}$$

Time-like parton showers and the DGLAP equation

▶ Use generating function
$$D_a(x,t,\mu^2) = D_a(x,t)\Delta_a(t,\mu^2)$$
 to write

$$\frac{\mathrm{d}\ln\mathcal{D}_a(x,t,\mu^2)}{\mathrm{d}\ln t} = \sum_{b=q,g} \int_x^{1-\varepsilon} \frac{\mathrm{d}z}{z} \frac{\alpha_s}{2\pi} P_{ab}(z) \frac{D_b(x/z,t)}{D_a(x,t)} \; .$$

 A similar probability density is used to generate initial-state emissions But final-state showers are typically unconstrained (hadrons not identified) In this case the probability density is modified to

$$\frac{\mathrm{d}}{\mathrm{d}\ln t}\ln\left(\frac{\mathcal{D}_a(x,t,\mu^2)}{D_a(x,t)}\right) = \sum_{b=q,g} \int_0^{1-\varepsilon} \mathrm{d}z \, z \, \frac{\alpha_s}{2\pi} \, P_{ab}(z) \; .$$

- Net result: Unitarity implies that forward-branching Sudakovs must include a 'symmetry factor' z [Jadach,Skrzypek] hep-ph/0312355
- ► Convenient interpretation as "tagging" of evolving parton
- Equivalent to standard technique at LO due to symmetry of $P_{ab}(z)$ More care is needed at NLO [Prestel,SH] arXiv:1705.00742

Collinear parton evolution at NLO

[Curci,Furmanski,Petronzio] NPB175(1980)27, [Floratos,Kounnas,Lacaze] NPB192(1981)417 Higher-order DGLAP evolution kernels obtained from factorization

- ▶ $P_{ji}^{(n)}$ not probabilities, but sum rules hold (\leftrightarrow unitarity constraint) In particular: Momentum sum rule identical between LO & NLO
- ► Goal: Perform the NLO computation of P⁽¹⁾_{ji} fully differentially using modified dipole subtraction [Catani,Seymour] hep-ph/9605323

Collinear parton evolution at NLO

```
[Prestel,SH] arXiv:1705.00742
```

- Simulation of exclusive states requires computing splitting functions on the fly using differential NLO calculation & collinear factorization
- Schematically very similar to Catani-Seymour dipole subtraction
- Simplest example: Flavor-changing configuration $q \rightarrow q'$

 $\mathsf{Tree-level}\ \mathsf{expression}^1 \leftrightarrow \mathsf{real-emission}\ \mathsf{correction}\ \mathsf{in}\ \mathsf{CS}$

$$P_{qq'} = \frac{1}{2} C_F T_R \frac{s_{aij}}{s_{ai}} \left[-\frac{t_{ai,j}^2}{s_{ai}s_{aij}} + \frac{4 z_j + (z_a - z_i)^2}{z_a + z_i} + (1 - 2\varepsilon) \left(z_a + z_i - \frac{s_{ai}}{s_{aij}} \right) \right]$$

Subtraction term $(q{\rightarrow}g){\otimes}(g{\rightarrow}q') \leftrightarrow$ differential subtraction term in CS

$$\tilde{P}_{qq'} = C_F T_R \frac{s_{aij}}{s_{ai}} \left(\frac{1 + \tilde{z}_j^2}{1 - \tilde{z}_j} - \varepsilon (1 - \tilde{z}_j) \right) \left(1 - \frac{2}{1 - \varepsilon} \frac{\tilde{z}_a \tilde{z}_i}{(\tilde{z}_a + \tilde{z}_i)^2} \right) + \dots$$

$${}^{1}(z_{a}+z_{i})t_{ai,j} = 2(z_{a}s_{ij}-z_{i}s_{aj}) + (z_{a}-z_{i})s_{ai}$$

Collinear parton evolution at NLO

[Prestel,SH] arXiv:1705.00742

Complete NLO result schematically given by

$$P_{qq'}^{(1)}(z) = \mathcal{C}_{qq'}(z) + \mathcal{I}_{qq'}(z) + \int \mathrm{d}\Phi_{+1} \Big[\mathcal{R}_{qq'}(z, \Phi_{+1}) - \mathcal{S}_{qq'}(z, \Phi_{+1}) \Big]$$

- ▶ Real correction $R_{qq'}$ and subtraction terms $S_{qq'} \nearrow$ previous slide Difference finite in 4 dimensions \rightarrow amenable to MC simulation
- Integrated subtraction term and factorization counterterm given by

$$I_{qq'}(z) = \int d\Phi_{+1}S_{qq'}(z, \Phi_{+1})$$

$$C_{qq'}(z) = \int_{z} \frac{dx}{x} \left(P_{qg}^{(0)}(x) + \varepsilon \mathcal{J}_{qg}^{(1)}(x) \right) \frac{1}{\varepsilon} P_{gq}^{(0)}(z/x)$$

$$\mathcal{J}_{qg}^{(1)}(z) = 2C_{F} \left(\frac{1 + (1-x)^{2}}{x} \ln(x(1-x)) + x \right)$$

- Analytical computation of I not needed, as I + P/ε finite generate as endpoint at s_{ai} = 0, starting from integrand at O(ε)
- ► All components of P⁽¹⁾_{qq'} eventually finite in 4 dimensions Can be simulated fully differentially in parton shower

Validation

 \blacktriangleright Effect of single $1 \rightarrow 3$ emission on leading and next-to-leading jet rate

Impact relative to leading-order prediction

• Effect of $1 \rightarrow 3$ emissions on leading jet rate

• Impact of multiple $1 \rightarrow 3$ emissions

How to make parton showers more precise? Part II: Soft limit

Soft evolution at the next-to-leading order

[Marchesini,Korchemsky] PLB313(1993)433, hep-ph/9210281

► Soft-gluon resummed expression of Drell-Yan or DIS cross section

$$\frac{1}{\sigma} \frac{d\sigma(z,Q^2)}{d\log Q^2} = \mathcal{H}(Q^2) \, \widetilde{W}(z,Q^2)$$

RGE governed by Wilson loop $\widetilde{W}\left(Q(1-z) \text{ - total soft gluon energy}\right)$

Non-abelian exponentiation theorem allows to expand as

$$\widetilde{W} = \exp\left\{\sum_{i=1}^\infty w^{(\mathbf{n})}\right\}$$

One-loop result given by

where $L = -b_+b_-/b_0^2$ and $b_0 = 2 e^{-\gamma_E}/\mu$

Soft evolution at the next-to-leading order

▶ 2-loop contribution $w^{(2)}$ computed from (reals only) [Belitsky

[Belitsky] hep-ph/9808389

Renormalized result in position space

$$w^{(2)} = C_F \frac{\alpha_s^2(\mu)}{(2\pi)^2} \left[-\frac{\beta_0}{6} \ln^3 L + \Gamma_{\rm cusp}^{(2)} \ln^2 L + 2\ln L \left(\Gamma_{\rm soft}^{(2)} + \frac{\pi^2}{12} \beta_0 \right) + \dots \right]$$

$$\Gamma_{\text{cusp}}^{(2)} = \left(\frac{67}{18} - \frac{\pi^2}{6}\right) C_A - \frac{10}{9} T_R n_f , \qquad \beta_0 = \frac{11}{6} C_A - \frac{2}{3} T_R n_f$$
$$\Gamma_{\text{soft}}^{(2)} = \left(\frac{101}{27} - \frac{11}{72} \pi^2 - \frac{7}{2} \zeta_3\right) C_A - \left(\frac{28}{27} - \frac{\pi^2}{18}\right) T_R n_f$$

This is the benchmark to be reproduced by exclusive MC simulation

Separation of soft and collinear sectors

[Dulat,Prestel,SH] arXiv:1805.03757

• Phase space parametrized in terms of total soft momentum $q = p_1 + p_2$

Momentum space result expanded in Laurent series using

$$\frac{1}{q_{\pm}^{1+\epsilon}} = -\frac{1}{\epsilon} \,\delta(q_{\pm}) + \sum_{i=0}^{\infty} \frac{\epsilon^n}{n!} \left(\frac{\ln^n q_{\pm}}{q_{\pm}}\right)_{+}$$

► Unitarity implies that factorized plus distributions like [1/q_+]_+[1/q_-]_+ have no PS analogue → define double-plus distributions instead

$$\left[f(q_{+},q_{-})\right]_{++}g(q_{+},q_{-}) = f(q_{+},q_{-})\left(g(q_{+},q_{-}) - g(0,0)\right)$$

► Re-organize entire calculation in terms of pure soft & collinear terms Key observation: q_± = 0 implies collinear limit for 1 & 2 emissions

Soft evolution at the next-to-leading order

[Catani, Grazzini] hep-ph/9908523
 Real-emission corrections can be written in convenient form

$$\begin{split} \mathcal{S}_{ij}^{(q\bar{q})}(1,2) &= -\frac{s_{ij}}{(s_{i1}+s_{i2})(s_{j1}+s_{j2})} \frac{T_R}{s_{12}} \Big(1-4\,z_1z_2\cos^2\phi_{12,ij}\Big) \\ \mathcal{S}_{ij}^{(gg)}(1,2) &= \mathcal{S}_{ij}^{(\text{s.o.})}(1,2) \frac{C_A}{2} \left(1+\frac{s_{i1}s_{j1}+s_{i2}s_{j2}}{(s_{i1}+s_{i2})(s_{j1}+s_{j2})}\right) \\ &+ \frac{s_{ij}}{(s_{i1}+s_{i2})(s_{j1}+s_{j2})} \frac{C_A}{s_{12}} \Big(-2+4\,(1-\epsilon)\,z_1z_2\cos^2\phi_{12,ij}\Big) \end{split}$$

Strongly ordered and spin correlation components

$$S_{ij}^{(\text{s.o.})}(1,2) = \frac{s_{ij}}{s_{i1}s_{12}s_{j2}} + \frac{s_{ij}}{s_{j1}s_{12}s_{i2}} - \frac{s_{ij}^2}{s_{i1}s_{j1}s_{i2}s_{j2}}$$
$$4 z_1 z_2 \cos^2 \phi_{12,ij} = \frac{(s_{i1}s_{j2} - s_{i2}s_{j1})^2}{s_{12}s_{ij}(s_{i1} + s_{i2})(s_{j1} + s_{j2})}$$

 Apparently simple structure, but unlike collinear NLO results not reflected by iterated leading-order splitting kernels

 -> not all denominators can be composed from LO expressions

NLO subtraction: Dipole approach

- [Dulat,Prestel,SH] arXiv:1805.03757
- Nearly ok subtraction obtained from spin correlated parton shower

Building blocks are eikonal currents

$$J^{\mu}_{ij}(q) = \frac{p^{\mu}_i}{2p_iq} - \frac{p^{\mu}_j}{2p_jq}$$

and collinear splitting functions

$$\begin{split} P_{gq}^{\mu\nu}(z) &= T_R \left(-g^{\mu\nu} + 4 \, z(1-z) \, \frac{k_{\perp}^{\mu} \, k_{\perp}^{\nu}}{k_{\perp}^2} \right) \\ P_{gg}^{\mu\nu}(z) &= C_A \left(-g^{\mu\nu} \left(\frac{z}{1-z} + \frac{1-z}{z} \right) - 2 \, (1-\varepsilon) z(1-z) \, \frac{k_{\perp}^{\mu} \, k_{\perp}^{\nu}}{k_{\perp}^2} \right) \end{split}$$

► Finite remainder has integrable singularities → not suitable for MC problem arises from interference of abelian & non-abelian diagrams

NLO subtraction: Antenna approach - Kinematics

▶ In iterated emission $\overline{\imath j} \rightarrow \widetilde{\imath 12} j \rightarrow ij12$ emission probability of first step written in terms of momenta after second step is

$$\frac{\tilde{p}_i p_j}{2(\tilde{p}_i \tilde{p}_{12})(\tilde{p}_{12} p_j)} = \frac{s_{ij}}{(s_{i1} + s_{i2})(s_{j1} + s_{j2}) - s_{ij} s_{12}} \xrightarrow{i \quad 12 \quad j \quad i \quad 53 \quad j} \xrightarrow{j \quad 12 \quad j \quad i \quad 53 \quad j}$$

[Dulat, Prestel, SH] arXiv:1805.03757

▶ Not identical to desired "eikonal" $s_{ij}/((s_{i1} + s_{i2})(s_{j1} + s_{j2}))$ in soft⊗collinear terms of S_{ij} but easily corrected by weight

$$w_{ij}^{12} = 1 - \frac{s_{ij}s_{12}}{(s_{i1} + s_{i2})(s_{j1} + s_{j2})} = \left(\frac{p_{\perp,12}^{(ij)}}{m_{\perp,12}^{(ij)}}\right)^2$$

▶ Iterated eikonals of type $s_{ij}/(s_{i1}s_{j1})$, $s_{j1}/(s_{12}s_{j2})$ in $S_{ij}^{(s.o.)}$ reconstructed by partial fractioning & matching to $LO^2 \rightarrow$ additional weight

$$\bar{w}_{ij}^{12} = \frac{(s_{i1} + s_{i2})(s_{j1} + s_{j2}) - s_{ij}s_{12}}{s_{i1}s_{j1} + s_{i2}s_{j2}} = \frac{(p_{\perp,12}^{(ij)})^2}{(p_{\perp,1}^{(ij)})^2 + (p_{\perp,2}^{(ij)})^2}$$

These weights lie between zero and one and reduce emission rates

Leading color fully differential soft evolution at NLO

[Dulat,Prestel,SH] arXiv:1805.03757

▶ Squared LO eikonal and negative term in $S_{ij}^{(s.o.)}$ both have no parton-shower analogue \rightarrow correct for both mismatches by adding sub-leading color contribution to *i*1-collinear splitting functions

$$P_{ij,A}^{(\text{slc})}(1,2) = \frac{2\,s_{ij}}{s_{i1} + s_{j1}} \, \frac{w_{ij}^{12} + \bar{w}_{ij}^{12}}{2} \left(\bar{C}_{ij} - C_A\right) \,, \quad \bar{C}_{ij} = \begin{cases} 2C_F & \text{if } i \& j \text{ quarks} \\ C_A & \text{else} \end{cases}$$

• Second soft emission off Wilson lines occurs with color charge factor C_A due to interference with octet

$$P_{ij,B}^{(\text{slc})}(1,2) = \frac{2s_{i2}}{s_{i1} + s_{12}} \frac{w_{ij}^{12} + \bar{w}_{ij}^{12}}{2} \left(C_A - \bar{C}_{ij}\right)$$

Combined effect on *i*1-collinear matched splitting function

$$P_{ij}^{(\text{slc})}(1,2) = \left(C_A - \bar{C}_{ij}\right) \left(\frac{2s_{i2}}{s_{i1} + s_{12}} - \frac{2s_{ij}}{s_{i1} + s_{j1}}\right) \frac{w_{ij}^{12} + \bar{w}_{ij}^{12}}{2}$$

► Non-singular in *i*1-collinear limit → color charges of Wilson lines in soft-collinear limit are C_i and C_j, in agreement with DGLAP

Leading color fully differential soft evolution at NLO

[Dulat,Prestel,SH] arXiv:1805.03757

Complete NLO-weighted LO splitting functions

$$(P_{qq})_{i}^{k}(1,2) = C_{F}\left(\frac{2s_{i2}}{s_{i1}+s_{12}}\frac{w_{ik}^{12}+\bar{w}_{ik}^{12}}{2}\right) + P_{ik}^{(\text{slc})}(1,2)$$

$$(P_{gg})_{ij}(1,2) = C_{A}\left(\frac{2s_{i2}}{s_{i1}+s_{12}}\frac{w_{ij}^{12}+\bar{w}_{ij}^{12}}{2} + w_{ij}^{12}\left(-1+z(1-z)2\cos^{2}\phi_{12}^{ij}\right)\right)$$

$$(P_{gq})_{ij}(1,2) = T_{R}w_{ij}^{12}\left(1-4z(1-z)\cos^{2}\phi_{12}^{ij}\right)$$

- Calculation completed by subtracted real correction, virtuals and factorization counterterms
- Counterterms are endpoint contributions, as in collinear limit

$$\begin{split} \tilde{\mathcal{S}}_{gq}^{(\text{cusp})} &= \delta(s_{12}) \, \frac{2 \, s_{ij}}{s_{i12} s_{j12}} \, T_R \Big[2z(1-z) + \big(1 - 2z(1-z)\big) \ln(z(1-z)) \Big] \\ \tilde{\mathcal{S}}_{gg}^{(\text{cusp})} &= \delta(s_{12}) \, \frac{2 \, s_{ij}}{s_{i12} s_{j12}} \, 2C_A \, \left[\frac{\ln z}{1-z} + \frac{\ln(1-z)}{z} + \big(-2 + z(1-z)\big) \ln(z(1-z)) \right] \\ \tilde{\mathcal{S}}_{wl}^{(\text{cusp})} &= - \, \delta(s_{i1}) \, \frac{1}{2} \, \frac{C_A}{2} \, \frac{2 \, s_{ij}}{s_{i12} s_{j12}} \, \left(\frac{\ln z_i}{1-z_i} + \frac{\ln(1-z_i)}{z_i} \right) + \left(\text{swaps} \right) \end{split}$$

Sum integrates to CMW correction [Catani,Marchesini,Webber] NPB349(1991)635

Leading color fully differential soft evolution at NLO

[Dulat, Prestel, SH] arXiv:1805.03757

▶ Impact on $2 \rightarrow 3$ and $3 \rightarrow 4$ Durham jet rate at LEP I

- Uncertainty bands no longer just estimates but perturbative QCD predictions for the first time
- ► Fair agreement with CMW scheme

How to make parton showers more precise? Part III: Beyond leading color

Parton-shower formalism at full color

```
[Reichelt,SH] arXiv:19mm.soon
```

▶ Evolution of matrix element in strongly ordered soft limit determined by

$$\mathbf{\Gamma}_{n}(\mathbf{\Gamma}) = -\sum_{\substack{i=1\\j\neq i}}^{n} \sum_{\substack{j=1\\j\neq i}}^{n} \mathbf{T}_{i} \mathbf{\Gamma} \mathbf{T}_{j} w_{ij} , \qquad w_{ij} = \frac{s_{ij}}{s_{iq} s_{jq}} \quad \leftrightarrow \quad \checkmark$$

- Multiple soft insertions lead to k + 1-gluon matrix element $\langle m_{n+k+1} | m_{n+k+1} \rangle = \langle M_n | \Gamma_n (\Gamma_{n+1} (... \Gamma_{n+k+1} (\Gamma_{n+k} (1))...)) | M_n \rangle$
- Differential radiation probability becomes

$$\frac{\mathrm{d}\sigma_{n+k+1}}{\sigma_{n+k}} = \mathrm{d}\Phi_{+1} \, 8\pi\alpha_s \, \frac{\langle m_{n+k} | \boldsymbol{\Gamma}_{n+k} (\mathbf{1}) | m_{n+k} \rangle}{\langle m_{n+k} | m_{n+k} \rangle} \; ,$$

► In general, this differs from the terms leading to the soft function in approaches like Caesar [Banfi,Salam,Zanderighi] hep-ph/0407286, but is identical for the global recursively IR safe observables considered there

Computation of color insertions

[Reichelt,SH] arXiv:19mm.soon

- An essential ingredient for the MC implementation is an algorithm to compute Γ that scales linearly with the number of gluons
- ► This can be achieved by working in the bi-fundamental representation and sampling over color assignments ↔ color flow representation

Coefficient	Analytic value $/ N_c$	MC result / N_c
$ = F^c_{ab} \mathrm{Tr} \left[T^a T^b T^c \right] $	$C_F \frac{C_A}{2}$	1.9998(2)
$\bigcirc = \operatorname{Tr}\left[T^a T^b T^a T^b\right]$	$-C_F\left(\frac{C_A}{2}-C_F\right)$	-0.2221(1)

Computation of color insertions

[Reichelt,SH] arXiv:19mm.soon

- An essential ingredient for the MC implementation is an algorithm to compute Γ that scales linearly with the number of gluons
- ► This can be achieved by working in the bi-fundamental representation and sampling over color assignments ↔ color flow representation

Coefficient	Analytic value $/ N_c$	MC result / N_c
$ = F^d_{ae} F^c_{eb} \operatorname{Tr} \left[T^a T^b T^c T^d \right] $	$C_F\left(rac{C_A}{2} ight)^2$	2.9995(4)
$ = F_{bc}^{d} \operatorname{Tr} \left[T^{a} T^{b} T^{a} T^{c} T^{d} \right] $	$-C_F \frac{C_A}{2} \left(\frac{C_A}{2} - C_F \right)$	-0.3332(3)
$ = \operatorname{Tr} \left[T^a T^b T^c T^a T^b T^c \right] $	$C_F\left(\frac{C_A}{2} - C_F\right)\left(C_A - C_F\right)$	0.3701(1)

Computation of color insertions

Coefficient	Analytic value $/ N_c$	MC result / N_c
	$C_F\left(rac{C_A}{2} ight)^3$	4.4996(8)
	$C_F\left(rac{C_A}{2} ight)^3\left(1+rac{2}{N_c^2} ight)$	5.499(1)
\bigotimes	$-C_F\left(rac{C_A}{2} ight)^2\left(rac{C_A}{2}-C_F ight)$	-0.5001(5)
	$-C_F\left(rac{C_A}{2} ight)^2\left(rac{C_A}{2}-C_F-rac{C_A}{N_c^2} ight)$	0.5007(4)
	$C_F \frac{C_A}{2} \left(\frac{C_A}{2} - C_F \right) \left(C_A - C_F \right)$	0.5556(2)
\bigotimes	$C_F \frac{C_A}{2} \left(\left(\frac{C_A}{2} - C_F \right) \left(C_A - C_F \right) - \frac{C_A^2}{2N_c^2} \right)$	-0.4446(2)
	$C_F \frac{C_A}{2} \left(\frac{C_A}{2} - C_F\right)^2$	0.0558(3)
	$-C_F\left(\left(\frac{C_A}{2}-C_F\right)(C_A-C_F)\left(\frac{3}{2}C_A-C_F\right)-\frac{C_A^3}{4N_c^2}\right)$	-0.1729(1)

Rearrangement of antenna functions

[Reichelt,SH] arXiv:19mm.soon

- Another essential ingredient for the MC implementation is an efficient organization of the splitting functions
- Can borrow from the computation of the double-soft function [Dulat,Prestel,SH] arXiv:1805.03757

$$\boldsymbol{\Gamma}_{n}(\boldsymbol{\Gamma}) = \frac{1}{n-1} \sum_{i=1}^{n} \sum_{\substack{j=1\\j\neq i}}^{n} \left(\mathbf{T}_{i} \, \boldsymbol{\Gamma} \, \mathbf{T}_{i} P_{j}^{i} + \frac{1}{2} \sum_{\substack{k=1\\k\neq i,j}}^{n} \left(\mathbf{T}_{i} \, \boldsymbol{\Gamma} \, \mathbf{T}_{k} + \mathbf{T}_{k} \, \boldsymbol{\Gamma} \, \mathbf{T}_{i} \right) \tilde{P}_{jk}^{i} \right)$$

where

$$P_j^i = \frac{1}{s_{iq}} \frac{2 s_{ij}}{s_{iq} + s_{jq}}, \qquad \tilde{P}_{jk}^i = P_j^i - P_k^i$$

▶ Pⁱ_{jk} tends to zero in the *iq*-collinear limit → sub-leading color corrections kinematically suppressed

Towards full color evolution

These plots were generated with 32h worth of CPU time

Towards precision event simulation

Event generators in the bigger picture

Some history of parton-showers (personal view)

Assembling the pieces into precision tools

Relation to analytic resummation understood agreement can be restored by eliminating momentum & probability conservation in PS

- NLO corrections to collinear and soft evolution to be included in fully exclusive simulation
- Angular ordering approximation to coherence to be replaced by color dipole picture combined with full-color evolution

Saii

Summary & Outlook

Parton shower algorithms

- Crucial ingredient to full event simulation
- Essential to getting jet shapes right, thus feeding into event shapes, acceptances, subjet multiplicity & structure
- Many technical and formal improvements over past years renewed interest in dipole formulation and improvements thereof
- ▶ Parton showers undergoing similar transformation right now as fixed-order calculations two decades ago → 2nd NLO revolution

Parton shower resummation

- \blacktriangleright (Dis-)agreement with analytic approaches worked out in simple cases
- Vibrant discussion of formal accuracy of parton showers spurred by experimental needs and theoretical interest
- Many open questions, but much progress recently

Thank you for your attention

Status of $t\bar{t}b\bar{b}$

- ► ATLAS and CMS tt
 t
 t
 t
 t
 t
 b
 b
 analyses rely on MC modelling for irreducible tt
 b
 b
 BG
- Largest sources of uncertainty on extracted signal strength related to tt+HF modeling!
- ► What can be improved?
 - ATLAS & CMS: relied on NLO+PS tt so far! More accurate theory with NLO ttbb used only to reweight HF fractions (ATLAS) or cross-checks (CMS)
 - Theory: Large perturbative ttbb uncertainties even increased by NLO+PS algorithms
 - Both: More rigorous combination of inclusive tt+jets and ttbb predictions.

Status of $t\bar{t}b\bar{b}$

Traditional MC simulation approaches to $t\bar{t}{+}{\rm HF}$

► Five-flavor scheme:

- "Inclusive" NLO+PS $t\bar{t}$ sample with HF from parton shower $g \rightarrow b\bar{b}$
- ► Multi-leg merged tt+jets sample with HF from higher-order MEs (hard b) or parton shower g → bb (soft/coll b)

Surprising feature:

- Jet production described by hard MEs, but b-jets not always from b-MEs!
- ▶ soft/collinear $g \rightarrow b\bar{b}$ from PS can transform light jets into b-jets

Four-flavor scheme:

► NLO+PS *ttbb* using matrix elements with massive b-quarks

Surprising feature:

► Secondary bb̄ from g → bb̄ in PS can convert light jet into b-jet → even interpretation changes

Status of $t\bar{t}b\bar{b}$

- Several tools on the market
 - Sherpa + OpenLoops
 Cascioli,Maierhöfer, Moretti,Pozzorini,Siegert arXiv:1309.5912
 - PowHel + Pythia/Herwig [Bevilacqua,Garzelli,Kardos] arXiv:1709.06915
 - PowhegBox + OpenLoops + Pythia/Herwig [Jezo,Lindert,Moretti,Pozzorini] arXiv:1802.00426
 - MG5_aMC + Pythia/Herwig
 - Herwig7 + OpenLoops
- History of out-of-the-box comparisons:
 - Large discrepancies
 - Due in part to pQCD uncertainties
 - But also beyond: Parton Shower, NLO+PS matching algorithm
- ▶ Ongoing: Tuned comparison ▶ Fixed-order studies of *ttbbj* at NLO show stabilization of *K*-factor for $\mu_R = (E_{T,t}E_{T,\bar{t}}E_{T,\bar{b}}E_{T,\bar{b}})^{1/4}$ → New benchmark for NLO+PS programs! [Buccioni,Pozzorini,Zoller '19]

Matching $X+jets \& Xb\bar{b}$

▶ Interpret $Xb\bar{b}$ as part of Xjj

- 1. Cluster to obtain parton shower history
- 2. Apply $\alpha_s(\mu_R^2) \to \alpha_s(p_T^2)$ reweighting
- 3. Apply Sudakov factors $\Delta(t,t')$ (trial showers)

Remove double-counting

- 1. Cluster PS-level event using inverse PS
- 2. Look at leading two emissions
 - Heavy Flavour \rightarrow keep from $Xb\bar{b}$ ("direct component")
 - ► Light Flavour → keep from X+jets ("fragmentation component")
 - Subleading $g \rightarrow b\bar{b}$ splittings not from $Xb\bar{b}$ ME, but X4j ME+PS

▶ Match 5F→4F in PDFs and α_s

- 1. Use 5F PDF / α_s to be consistent with Xjj
- 2. Use matching coefficients to correct to 4F scheme [Buza,Matiounine,Smith,van Neerven] hep-ph/9612398, [Forte,Napoletano,Ubiali] arXiv:1607.00389 \rightarrow Coefficients up to (N)LL generated by (N)LO parton shower!
- 3. Reweighting needed only for α_s in hard ME

Can be applied to LO and NLO merging!

[Krause, Siegert, SH] arXiv:1904.09382

Example: Z+jets & Zbb

dσ/dp⊥ [pb/GeV]

MC/Data

[Krause,Siegert,SH] arXiv:1904.09382

Matching $t\bar{t}$ +jets & $t\bar{t}b\bar{b}$

[Katzy,Krause,Pollard,Siegert] in preparation

- ► Combination of $t\bar{t}$ +0,1j@NLO+2,3j@LO and massive $t\bar{t}b\bar{b}$ @NLO
- 2-bjet production dominated by direct component, but 1-bjet observables with equal contributions from direct and fragmentation configurations!

[F.Siegert SM@LHC '19]

